
© 2004 Altera Corporation

IFI Advanced CAN Module

User Guide

Core Version: 04095A55
Document Date: 11.2016

© 2004 Altera Corporation

Contents
 Overview
 Install
 Integrating the Core using SOPC Builder
 Integrating the Core using QSYS Interconnection
 Reference Designs
 Using the Core without Nios/SOPC/QSYS
 Detailed Information
 VHDL Testbench
 License Agreement

2

© 2004 Altera Corporation

Overview
 Block Diagram
 Feature List
 Altera Implementation
 OpenCore Plus Feature
 Using the Core without External Hardware
 Using Signal Tap II
Options
 Pricing
 References
 CAN Background
 Contacting Technical Support

3

4

Block Diagram

Transceiver

DBFLEX-CAN

DBLIN-CAN

Slave
Interface

Filter
Masks

Nios®II

Advanced CAN

CAN BUS

Avalon Interconnect

CAN
Core

RX/TX

Timestamp
Clock

5

IFI Advanced CAN Feature List
 CAN 2.0B

− Standard or Extended Identifier
− Remote Frames
− Error-Handling

 Up to 254 Messages Transmit Buffer
− FIFO Pointer accessible

 Up to 4096 Messages Receive Buffer
− FIFO Pointer accessible

 Up to 256 Message Filters
− Every Message Filter contains one MASK- and one Identifier-Register

 Avalon Interface
− Example Software included
− HAL Drivers for NIOS II included

6

IFI Advanced CAN Feature List
 Silent Mode
 High Priority Message
 32 Bit Timestamp:

− for received messages
− for transmitted messages with frame number other than 0

 For external CPU support :
− 8,16 or 32 Bit Interface

 Read of the Compile Time Parameters possible

7

IFI Advanced CAN Implementation
 Design Flows supported

− QSYS/SOPC Builder
− Megawizard

 Device Families targeted (depending on date of purchase)
− CYCLONE
− STRATIX
− ARRIA
− MAX 10

 Minimal Device Resource Utilization
− about 2500 LE + 4 M9K for Cyclone III, Cyclone IV, MAX 10
− about 1200 ALM + 4 M10K for Stratix, Arria, Cyclone V

 Maximum Device Resource Utilization
− ~ 100 LEs additional
− Number of Ram blocks depend on the user setting

8

OpenCore Plus Feature
 Test the CAN Module on your board

− There is no time limit with an established connection between the
device and the Quartus programmer.

− If you remove the connection the time remaining is ~ 1 hour.

9

IFI Advanced CAN Reference Design

 Test the IFI NIOS CAN without external Hardware

10

IFI Advanced CAN Reference Design

 Use Signaltap II to watch the TX Pins

11

IFI Advanced CAN Pricing
 Node-Locked License: 7500.-- €

− 1 year Maintenance included
− T-Guard or NIC-ID
− Maintenance: 750.-- € / year

 Floating License: 9375.-- €
− 1 year Maintenance included
− Single or Multi Server
− Maintenance: 937.-- € / year

 Licensing:
− Unlimited NIC-ID License
− Royalty Free with IFI
− The CAN-NETWORK-PROTOCOL-License is not included

 Available by Bosch (Bosch charges royalties)

12

IFI NIOS®II Advanced CAN
 Hardware Tested on

− DBC1C12 / DBC2C20 / DBC3C40 Cyclone Development Board
− Cyclone / Cyclone II NIOS Development Kit
− Cyclone III Starter Kit
− Stratix / StratixII NIOS Development Kit
− Against

 Each other
 Vector CANalyzer
 Other CANcontrollers

 The IFI Advanced CAN is running successfully in many customer projects
 The IFI CAN IP Core 6.8 passed the ISO CAN conformance tests.

− ISO 16845:2004 Road vehicles-Controller area network (CAN) – Conformance test plan
− C&S enhancement / corrections
− Reference: CAN CONFORMANCE TESTING Test Specification C&S Version 1.5

13

CAN-Background
 CAN Messages:

− Every CAN message consist of a certain number of bits that are divided
into fields. There are fields like Arbitration Field, Data Field, CRC, End of
Frame…

− The Arbitration Field is different for CAN 2.0 A and CAN 2.0 B messages.
It’s a logical address with 11 bits for CAN 2.0 A and 29 bits for CAN 2.0 B.
The lowest value is the highest priority = 0.

− The Data Field contains the application data of the message with 0 to 64
bits (0 to 8 bytes).

− With exception of the CRC delimiter, the ACK field and the EOF the bits
are stuffed. That means, 5 consecutive bits with identical value are
followed from a complementary bit.

− Error Frame and the Overload Frame are of a fixed form and not coded
with bit stuffing.

 Error Detection:
− The error management unit is able to detect five different error types.

Bit Error
Bit Stuffing Error

14

CAN-Background
CRC Error
Form Error
ACK Error

 Error Handling:
− Error detected
− Transmit of error frame
− Message will be discarded
− Error counters are incremented
− Transmission will be repeated

 Error Limitation:
− To prevent a permanently disturbed bus each CAN controller has three

error states.
Error Active
Error Passive
Bus Off

15

CAN-Error States

INIT

Error Active

Error Passive

Bus Off

Normal Mode = 1

Normal Mode = 1

REC > 127
or TEC > 127
and TEC < 255

REC <= 127
and TEC <= 127

TEC > 255

16

Contacting Technical Support
Although we have made every effort to ensure that this SOPC Builder Ready

OpenCore Package works correctly, there might be problems that we have
not encountered. If you have a question or problem that is not answered by
the information provided in this README file, please contact the IP Vendor.

For questions about the core's features, functionality, and parameter settings
please contact:

IFI Ingenieurbüro Für Ic-Technologie
F. Sprenger
Kleiner Weg 3 -- 97877 Wertheim -- Germany
Phone: (+49)9342/96080
E-Mail: ifi@ifi-pld.de
http://www.ifi-pld.de

© 2004 Altera Corporation

Install
 How to install
 QSYS/SOPC Builder Ready OpenCore Package
 Licensing
 Set up Licensing

17

18

Install the IFI Advanced CAN
 Before you can start using IFI Advanced CAN functions, you must install the IFI Advanced CAN

files on your computer. The following instructions describe this process.
 Close QuartusII and IDE.
 The installed QuartusII version must be 9.1 or newer
 Install the IFI Advanced CAN Files

− The following instructions describe how you install IFI Advanced CAN on computers running the
Windows, Linux, or Solaris operating systems.

− IF you don’t change the installation path, the QSYS/SOPC Builder and the Megawizard will find the IP
automatically

− Windows
 Follow these steps to install the IFI Advanced CAN on a PC running a supported version of the Windows operating

system:
 Choose Run (Windows Start menu).
 Type <path name>\<filename>.exe, where <path name> is the location of the downloaded IFI Advanced CAN function

and <filename> is the filename of the IFI Advanced CAN function.
 Click OK. The IFI Advanced CAN Installation dialog box appears. Follow the on-screen instructions to finish

installation.
− Solaris & Linux

 Follow these steps to install the IFI Advanced CAN on a computer running supported versions of the Solaris and
Linux operating systems:

 Decompress the package by typing the following command:
 gzip -d<filename>.tar.gz

− where <filename> is the filename of the IFI Advanced CAN function.
 Extract the package by typing the following command:

− tar xvf <filename>.tar

19

SOPC/QSYS Ready OpenCore Package
The SOPC Builder Ready OpenCore Package contains all files required for plug-and-play
integration of this core into SOPC and QSYS tools, allowing the user to easily evaluate the
core within his Avalon-based system.

QuartusII IP Installation Path

IP Location

Documentation

Library for Quartus II

HAL Drivers

OCP License File

Reference Designs for Development boards

Software Examples
this folder will be automatically copied to
the software templates of the IDE

VHDL Testbench

20

CANopen Protocol Software

 There is an additional folder included
− CANopen_slave_IFI_Advanced_CAN

 In this folder you can find a software demonstration
from the IXXAT CANopen slave, adapted to the I/F/I
Advanced Can.

 Further documentation you will find in the doc folder
as:
− WP112-0010_CANopen_Protocol_Software_Quick_Start_Guide_IFI_CAN.pdf

21

Licensing
 OpenCorePlus License

This package is shipped with a OpenCorePlus license or the license is attached to email
<Core installation directory>\license\license_ocp.dat.
When the FEATURE line from this license is appended to the user's Quartus II license file, the
encrypted VHD file can be read into Quartus II and place and route can be performed.
The license permit generation of <revision_name>_time_limited.sof files.
The hardware evaluation feature will run during you have an established connection between
your board and the QuartusII programmer. If you remove the connection it will stop working
after 1 hour.
(Refer to the messages created by the programmer)

 Full License
If you purchased a FULL LICENSE you receive an additional license file,
license_???.dat.
Use this instead of the license_ocp.dat. When the FEATURE line from this license is
appended to the user's Quartus II license file, the encrypted VHD file can be read into Quartus
II and place and route can be performed. The license permit generation of
<revision_name>.pof files and gate-level simulation netlists.

 One FEATURE line can span more than one line

22

Set Up Licensing
 To install your license, you can either append the license to your license.dat file or you can

specify the IFI Advanced CAN ’s license_ocp.dat file in the Quartus II software.
− Before you set up licensing for the IFI Advanced CAN , you must already have the Quartus II software

installed on your computer with licensing set up.
 Append the License to Your license.dat File

− To append the license, follow these steps:
− Open the IFI Advanced CAN license file in a text editor.
− Open your Quartus II license.dat file in a text editor.
− Copy all lines from the license file and paste it into the Quartus II license file.
− Do not delete any FEATURE lines from the Quartus II license file.
− Save the Quartus II license file.

 When using editors such as Microsoft Word or Notepad, ensure that the file does not have extra extensions
appended to it after you save (e.g., license.dat.txt or license.dat.doc). Verify the filename in a DOS box or at a
command prompt. Also, make sure that the file is saved in plain-text format without formatting characters.

 Specify the License File in the Quartus II Software
− To specify the IFI Advanced CAN license file in Quartus II, follow these steps:
− Altera recommends that you give the file a unique name, e.g., <core name>_license.dat.
− Run the Quartus II software.
− Choose License Setup (Tools menu). The Options dialog box opens to the License Setup page.
− In the License file box, add a semicolon to the end of the existing license path and filename.
− Type the path and filename of the IFI Advanced CAN function license file after the semicolon.

 Do not include any spaces either around the semicolon or in the path/filename.
− Click OK to save your changes.

© 2004 Altera Corporation

Integrating the Core using SOPC Builder
 Adding the Core to your System
 About
 Documentation
 Parameterize

23

24

Adding the Core to your System
 This walkthrough involves the following steps:

− Create a New Quartus II Project
− Create a New SOPC Builder Design
− Launch IP Toolbench

 Step 1: Parameterize
 Step 2: Generate

 Create a New Quartus II Project
− Before you begin, you must create a new Quartus II project. With the New Project wizard, you specify the working

directory for the project, assign the project name, and designate the name of the top-level design entity. You will also
specify the IFI Advanced CAN IP user library. To create a new project, follow these steps:

− Choose Programs > Altera > Quartus II <version> (Windows Start menu) to run the Quartus II software or
− Choose Programs > intelFPGA > Quartus II <version> (Windows Start menu) to run the Quartus II software
− Choose New Project Wizard (File menu).
− Click Next in the introduction (the introduction will not display if you turned it off previously).
− Specify the working directory for your project. This walkthrough uses the directory c:\qdesigns\myproject.
− Specify the name of the project. This walkthrough uses myproject.
− Click Next.
− Click User Libraries…
− Type <path>\ifi_advanced_can-v9.1<version>\lib\ into the Library name box, where <path> is the directory in which you

installed the IFI CAN IP.
− Click Add.
− Click OK.
− Click Next.
− Choose the target device family in the Family list.
− Click Finish.
− You have finished creating your new Quartus II project.

25

Integrating the Core with your System
using SOPC Builder
 This section contains instructions on the following:

− Adding the Core to your System
− Using ModelSim to Simulate the Core within your System
− Running the Reference Design

 These instructions assume that the user is familiar with the
− OpenCore evaluation process,
− Quartus II development software,
− and the SOPC Builder tool.

 For more information on these prerequisites, please visit
www.altera.com.

26

Adding the Core to your SOPC System

 Launch SOPC Builder from
Quartus II (Tools menu).

 Select the core by clicking on
the core name

 Click "Add" to add the core to
your system.

27

 Info + Documentation

 Parameters

 Information

28

29

 Enable or Disable the
Timestamp

 Select the number of Filters
and Masks

 Receive buffer-size in
messages

 Transmit buffer-size in
messages

 Baudrate Calculator

30

 The CAN timing parameters are
startup values and could be
overwritten by software

 The clock frequency of your selected
clock.

 The CAN timing is always a result of 3
parameters
 Prescale
 Timesegment A
 Timesegment B

 The necessary registervalues of these
parameters are different to the values
used for computation of the

 Baudrate and the
 Samplepoint.

31

 For external CPU interfaces it’s
possible to select the width of the
databus and the endian-ness of the
bus. The NIOSII CPU is Little_Endian

 32Bits / 16 Bits / 8 Bits

 Little_Endian / Big_Endian

 In the information field you will find
informations, warnings and errors

 Click on Finish will add the core to
your SOPC system

32

Adding the Core to your System

 Specify desired instance name, base address, and IRQ.
 Complete system generation as described in the SOPC

Builder documentation.

33

Integrating the Core with your System
using QSYS
 This section contains instructions on the following:

− Adding the core to your system
− Running the reference design

 These instructions assume that the user is familiar with the
− OpenCore evaluation process,
− Quartus II development software,
− and the QSYS Interconnect tool

 For more information on these prerequisites, please visit
www.altera.com

34

Adding the Core to your QSYS
System

 Launch the QSYS Tool from
Quartus II (Tools menu).

 Select the core by clicking on the
core name

 Click "Add" to add the core to
your system.

35

 Info +
Documentation

 Parameters

 Information

36

37

 Enable or Disable
the Timestamp

 Select the number
of Filters and
Masks

 Receive buffer-
size in messages

 Transmit buffer-
size in messages

 Baudrate
Calculator

38

 The CAN timing
parameters are startup
values and could be
overwritten by software

 The clock frequency of
your selected clock.

 The CAN timing is
always a result of 3
parameters
 Prescale
 Timesegment A
 Timesegment B

 The necessary
registervalues of these
parameters are
different to the values
used for computation
of the

 Baudrate and the

 Samplepoint.

39

 For external CPU interfaces it is possible to select the width of
the databus.

 64 Bits / 32Bits / 16 Bits / 8 Bits

 In the information field you will find informations, warnings
and errors

 Clicking on Finish will add the core to your QSYS system

40

Adding the Core to your System

 Specify the desired instance name, base address, and IRQ
 connect the system clock to can_slave_clock Clock Input

 Complete the system generation as described in the QSYS
documentation

© 2004 Altera Corporation

Reference Designs

 Running a Reference Design
 Creating a Software Project
 Run a Hardware Configuration
 Using Modelsim to Simulate the Core within your System

41

42

Running a Reference Design
 Start Quartus II, version 9.1 or higher.
 Open the Quartus II project <Core installation directory>\

reference_designs\xxx\Reference_design.qpf
 Launch SOPC/QSYS Builder from Quartus II (Tools menu).
 Click "Generate" to generate the HDL, and Modelsim project files.
 Click "Exit" to go back to Quartus and compile the design.
 Launch the IDE for creation of software projects, InstructionSetSimulation or Modelsim

software simulation.
− For the Simulation are the following lines in the Testbench included

rx_to_the_cana <= tx_from_the_cana and tx_from_the_canb;
rx_to_the_canb <= tx_from_the_cana and tx_from_the_canb;

− This allows communication between both CAN Nodes

43

Creating a Software Project
 File  New 

− NIOS II Application and
BSP from Template

− Click Next

Select the SOPC Information File of
your project with project name

Select „Hello Advanced CAN“

Click on Finish

44

Run a Hardware Configuration
 Select your Project within the C/C++ Projects View
 Run  Run..
 Select NiosII

Hardware
 Click on New
 Click on Run

45

Using ModelSim to Simulate the Core within your System

 Generate your system using the SOPC Builder.
 Launch the IDE and launch ModelSim or ModelSim Altera/Intel

Edition, via the
− Run--Run...--New Modelsim Configuration in IDE.

 Type 's' to load the design files.
 Type 'w' to add the appropriate waveforms to the wave window.
 Type 'run 5 ms' to start the simulation.
 For more details on simulation, please see Altera Application

Note 351:
− Simulating NiosII Embedded Processor Designs. (<SOPC Builder

installation directory>\documents\AN351.pdf)

© 2004 Altera Corporation

Using the Core without SOPC/QSYS
MegaWizard Plug-In Manager
 IP Catalog
 Parameterize
 Generate
 Quartus Symbol
 Reopening of the Modul
 Port Description
 Read Timing
Write Timing

46

47

MegaWizard Plug-In Manager for older
Quartus versions

Start MegaWizard Plug-In
Manager

Select the wrapper and
simulation language

Select the IP Core

Type in the name

Click Next

48

Use IP Catalog and Advanced CAN IP

49

 Info + Documentation

 Parameters

 Information

50

51

 Enable or Disable the Timestamp

 Select the number of Filters and Masks
 Receive buffer-size in messages
 Transmit buffer-size in messages

 Baudrate Calculator

52

 The CAN timing parameters are
startup values and could be
overwritten by software

 The clock frequency of your selected
clock.

 The CAN timing is always a result of 3
parameters
 Prescale
 Timesegment A
 Timesegment B

 The necessary registervalues of these
parameters are different to the values
used for computation of the

 Baudrate and the
 Samplepoint.

53

 For external CPU interfaces it’s
possible to select the width of the
databus and the endian-ness of the
bus. The NIOSII CPU is Little_Endian

 32Bits / 16 Bits / 8 Bits

 Little_Endian / Big_Endian

 In the information field you will find
informations, warnings and errors

 Click on Finish

54

Generation of the Core Variation

55

Use the QuartusII IP File

 File open
 Search for *.qip
 Select file
 Project / Add current file to project

56

Your new QuartusII IP Symbol

57

Port description
Portname Direction Usage Description

tx output External Transmit from CAN

rx input External Receive to CAN

tstamp_clk input External Timestamp Clock Input

clk input Internal System clock

clrn input Internal System reset (low active)

we input Internal Write request (high active)

cs input Internal Chip select (high active)

Adr[x..0] input Internal Address for read/write requests

Dbin[x..0] input Internal Write data bus

Dbp[x..0] output Internal Read data bus

intc output Internal Interrupt request

58

Write Timing for the 32 Bit Interface

Address

Data

1 Wait Cycle Active Cycle

For the 8 and 16 Bit Interface no wait is necessary

59

Read Timing

Address

3 Wait Cycles

Data

Active Cycle

© 2004 Altera Corporation

Detailed Information

 Address map
 Registers
 CAN Timing
 Message Buffer Usage
 Status Informations
 Mask and Filter Handling
 HAL Drivers
 Driver Routines
 Structures
 Software Examples

60

61

Addressmap
 Address 0 to 3 are acting like a FIFO.

− Writing: Transmitmessage FIFO
− Reading: Receivemessage FIFO

 You can write up to 30..254 Transmitobjects into this FIFO.
 Address 1,2 and 3 can be written in any sequenz
 Writing address 0 increment the fifo pointer and the next 4

values can be written
 You can read received objects by reading address 0 to 3
 If the timestamp is used, you can read it by reading address 10
 Writing 1 to Rec Fifo read next value in the status register set

the read pointer to the next received object and also the next
timestampvalue (if used).

62

Data length code
Byte 3 Bit 31 30 29 28 27 26 25 24

read Frn 7 Frn 6 Frn 5 Frn 4 Frn 3 Frn 2 Frn 1 Frn 0

write Frn 7 Frn 6 Frn 5 Frn 4 Frn 3 Frn 2 Frn 1 Frn 0

Byte 2 Bit 23 22 21 20 19 18 17 16

read Obj 8

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Obj 7 Obj 6 Obj 5 Obj 4 Obj 3 Obj 2 Obj 1 Obj 0

write

Byte 0 Bit 7 6 5 4 3 2 1 0

read RTR DLC 3 DLC 2 DLC 1 DLC 0

write RTR DLC 3 DLC 2 DLC 1 DLC 0

 Frn [7.. 0] : Frame number for Transmit Timestamp
 Obj [8..0] : Filter Object number of a received message
 RTR : Remote transmit
 DLC [3..0] : Data length code (0 .. 8 DataBytes)

 Read => Received message
 Write => Transmit message

Base Address Offset 0

63

Frame Number for Transmit Timestamp
 If this number is set to 00x, the feature is deactivated.
 Writing any number different to 00x activates this feature.
 If there is a number between 01x and FFx, the succesfull

transmit of the message will be timestamped and flaged like a
normal receive. Within the receive buffer the Data length code
register contains this number and the object number will be
00x. This information is not depending from a filter setting.

 Reading a number greater 00x means the message is not a
message comming from another transmiter, it‘s his own
transmitted message.

64

Identifier
Byte 3 Bit 31 30 29 28 27 26 25 24

read IDE IDX 28 IDX 27 IDX 26 IDX 25 IDX 24

write IDE IDX 28 IDX 27 IDX 26 IDX 25 IDX 24

Byte 2 Bit 23 22 21 20 19 18 17 16

read IDX 23 IDX 22 IDX 21 IDX 20 IDX 19 IDX 18 IDX 17 IDX 16

write IDX 23 IDX 22 IDX 21 IDX 20 IDX 19 IDX 18 IDX 17 IDX 16

Byte 1 Bit 15 14 13 12 11 10 9 8

read IDX 15 IDX 14 IDX 13 IDX 12 IDX 11 ID 10 ID 9 ID 8

write IDX 15 IDX 14 IDX 13 IDX 12 IDX 11 ID 10 ID 9 ID 8

Byte 0 Bit 7 6 5 4 3 2 1 0

read ID 7 ID 6 ID 5 ID 4 ID 3 ID 2 ID 1 ID 0

write ID 7 ID 6 ID 5 ID 4 ID 3 ID 2 ID 1 ID 0

 IDE : 1 => Use Extended Identifier
 IDX [28..11] + ID [10..0] : Extended Identifier
 ID [10..0] : Standard Identifier

 Read => Received message
 Write => Transmit message

Base Address Offset 1

65

Data 1 - 4
Byte 3 Bit 31 30 29 28 27 26 25 24

read Data4 7 Data4 6 Data4 5 Data4 4 Data4 3 Data4 2 Data4 1 Data4 0

write Data4 7 Data4 6 Data4 5 Data4 4 Data4 3 Data4 2 Data4 1 Data4 0

Byte 2 Bit 23 22 21 20 19 18 17 16

read Data3 7 Data3 6 Data3 5 Data3 4 Data3 3 Data32 Data3 1 Data3 0

write Data3 7 Data3 6 Data3 5 Data3 4 Data3 3 Data3 2 Data3 1 Data3 0

Byte 1 Bit 15 14 13 12 11 10 9 8

read Data2 7 Data2 6 Data2 5 Data2 4 Data2 3 Data2 2 Data2 1 Data2 0

write Data2 7 Data2 6 Data2 5 Data2 4 Data2 3 Data2 2 Data2 1 Data2 0

Byte 0 Bit 7 6 5 4 3 2 1 0

read Data1 7 Data1 6 Data1 5 Data1 4 Data1 3 Data1 2 Data1 1 Data1 0

write Data1 7 Data1 6 Data1 5 Data1 4 Data1 3 Data1 2 Data1 1 Data1 0

 Data1 [7..0] : Databyte 1
 Data2 [7..0] : Databyte 2
 Data3 [7..0] : Databyte 3
 Data4 [7..0] : Databyte 4

 Read => Received message
 Write => Transmit message

Base Address Offset 2

66

Data 5 - 8
Byte 3 Bit 31 30 29 28 27 26 25 24

read Data8 7 Data8 6 Data8 5 Data8 4 Data8 3 Data8 2 Data8 1 Data8 0

write Data8 7 Data8 6 Data8 5 Data8 4 Data8 3 Data8 2 Data8 1 Data8 0

Byte 2 Bit 23 22 21 20 19 18 17 16

read Data7 7 Data7 6 Data7 5 Data7 4 Data7 3 Data7 2 Data7 1 Data7 0

write Data7 7 Data7 6 Data7 5 Data7 4 Data7 3 Data7 2 Data7 1 Data7 0

Byte 1 Bit 15 14 13 12 11 10 9 8

read Data6 7 Data6 6 Data6 5 Data6 4 Data6 3 Data6 2 Data6 1 Data6 0

write Data6 7 Data6 6 Data6 5 Data6 4 Data6 3 Data6 2 Data6 1 Data6 0

Byte 0 Bit 7 6 5 4 3 2 1 0

read Data5 7 Data5 6 Data5 5 Data5 4 Data5 3 Data5 2 Data5 1 Data5 0

write Data5 7 Data5 6 Data5 5 Data5 4 Data5 3 Data5 2 Data5 1 Data5 0

 Data5 [7..0] : Databyte 5
 Data6 [7..0] : Databyte 6
 Data7 [7..0] : Databyte 7
 Data8 [7..0] : Databyte 8

 Read => Received message
 Write => Transmit message

Base Address Offset 3

67

Timing and Control
Byte 3 Bit 31 30 29 28 27 26 25 24

read SJW 1 SJW 0

write Set prescale Set Silent
Mode

Remove
pending
Message

Silent Mode Timestamp-
counter reset

High Priority
Message

Normal mode

Byte 2 Bit 23 22 21 20 19 18 17 16

read Prescale 7 Prescale 6 Prescale 5 Prescale 4 Prescale 3 Prescale 2 Prescale 1 Prescale 0

write Prescale 7 Prescale 6 Prescale 5 Prescale 4 Prescale 3 Prescale 2 Prescale 1 Prescale 0

Byte 1 Bit 15 14 13 12 11 10 9 8

read Timea 4 Timea 3 Timea 2 Timea 1 Timea 0

write Set timea Set SJW Timea 4 Timea 3 Timea 2 Timea 1 Timea 0

Byte 0 Bit 7 6 5 4 3 2 1 0

read Timeb 4 Timeb 3 Timeb 2 Timeb 1 Timeb 0

write Set timeb SJW 1 SJW 0 Timeb 4 Timeb 3 Timeb 2 Timeb 1 Timeb 0

Base Address Offset 4

68

Timing and Control
 Timea [4..0] : Timing Segment B
 Timeb [4..0] : Timing Segment A
 Prescale [7..0] : Prescale Counter
 SJW [1..0] : Synchronisation Jump Width
 Normal Mode:

− writing 1, start the CAN Node or restart after busoff
− writing 0, not used

 Silent Mode:
− writing 1, the CAN Node receive messages without Acknowledgement
− writing 0, the CAN Node receive messages with Acknowledgement

 Timestamp Counter reset:
− writing 1, reset the optional Timestampcounter
− writing 0, not used

 High Priority Message:
− writing 1, flags that the next written message is a High Priority Message
− writing 0, not used

 Remove pending Message
− writing 1, the CAN Node removes the ongoing message from the transmit buffer

69

Timing Settings for CAN

Sync Segment Timeslot before Samplepoint Timeslot after Samplepoint

Timeb – SJW + 1 SJW + 1

1 Timea + 1 Timeb + 2
Samplepoint 

 Total Bit Time 

 The prescale counter divide your clock frequency
− The number you fill in is incremented by 2
− Example: the clock frequency is 50 MHz  20 ns for each clock period. If you write a 2 to

the prescale  division factor = 4  80 ns for each time segment
 The bit length for the CAN transmission rate is

− 1 time segment for Sync
− (Timea+1) * time segment before samplepoint
− (Timeb+2) * time segment after samplepoint

70

Timing Settings for CAN
 Example:

− You want to transmit with 500k baudrate
− 1 / 500k  2000 ns total bit time
− If the length of one time segment is 80 ns

 Divide 2000 / 80  25 segments are necessary
− 25 – 1 segments for sync  24 segments
− The relationship between timea and timeb is responsible for the samplepoint
− If you chose 14 for (timea +1) and 10 for (timeb +2)

 Your samplepoint will be at 60% of the bit time
− Timea has to be written with the value 13
− Timeb has to be written with the value 8

 Synchronisation Jump Width
− Default value 0  Resynchronisation Jump is 1 Time segment
− Max value 3  Resynchronisation Jump is 4 Time segments
− Timeb includes the Synchronisation Jump Width

71

High Priority == 0

empty

empty
empty
empty
empty
Message 3
Message 2
Message 1
old
old
old

empty
empty
empty
empty
New Message
Message 3
Message 2
old
old
old
old

 Normal Transmit Fifo usage
− First in First out

Read Pointer

Read Pointer

Write Pointer

Write Pointer

External write Internal read Next External write Next Internal read

72

High Priority == 1

empty

empty
empty
empty
empty
Message 3
Message 2
Message 1
old
old
old

empty
empty
empty
empty
empty
Message 3
Message 2
Message 1
New Message
old
old

 High Priority Transmit Fifo usage
− First in Last out

Read Pointer

Read Pointer

Write Pointer

Write Pointer

External write Internal read Next External write Next Internal read

73

Interrupt mask
Byte 3 Bit 31 30 29 28 27 26 25 24

read Rec Buffer
full

Rec Buffer
overflow

Rec Buffer
not empty

Tra Buffer
full

Tra Buffer
overflow

Tra Buffer
empty

write Set Buffer
Int Mask

Rec Buffer
full

Rec Buffer
overflow

Rec Buffer
not empty

Tra Buffer
full

Tra Buffer
overflow

Tra Buffer
empty

Byte 2 Bit 23 22 21 20 19 18 17 16

read

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Transmit ok

write Set Transmit
Ok Int Mask

Transmit ok

Byte 0 Bit 7 6 5 4 3 2 1 0

read Error warn Busoff

write Set Error
Int Mask

Busoff Error warn

 Interrupt Mask settings : 1  Interrupt enabled
 Set Buffer Int Mask : 1  write only interrupt mask for the receive and transmit buffer Document changed
 Set Error Int Mask : 1  write only interrupt mask for the error flags
 Set Transmit ok Int Mask : 1  write only interrupt mask for the Transmit ok flag

Base Address Offset 5

74

Status
Byte 3 Bit 31 30 29 28 27 26 25 24

read Receive
busy

Transmit
busy

Rec Buffer
full INT

Rec Buffer
overflow INT

Rec Buffer not
empty INT

Tra Buffer
full INT

Tra Buffer
overflow INT

Tra Buffer
empty INT

write R B full
INT reset

R B overflow
INT reset

R B not empty
INT reset

T B full
INT reset

T B overflow
INT reset

T B empty
INT reset

Byte 2 Bit 23 22 21 20 19 18 17 16

read Receive
Buffer full

Transmit
Buffer full

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Message in
Transmit

Transmit ok
INT

write Transmit ok
INT reset

Byte 0 Bit 7 6 5 4 3 2 1 0

read Silent mode Error passive Error active Error warn busoff

write RecFifo read
next value

Error warn
INT reset

busoff
INT reset

 Status of the CAN node

Base Address Offset 6

75

Status Register
 Busoff

− The CAN node has stopped all activities
− Writing 1 reset the interrupt

 Error warn
− The number of errors is nearly before switching to Error passive

 Error active
− The CAN node works properly

 Error passive
− The CAN send recessive errorframes and suspend the transmission for 8 bittimes

 Silent Mode
− Reading 1  Silent Mode active

 Rec Fifo read next value
− Writing 1 to the bit increment the receive buffer read pointer to the next message and decrement the read buffer counter

 Transmit buffer full
− Status of the transmit buffer

 Receive buffer full
− Status of the receive buffer

76

Status Register
 Tra buffer empty INT

− The buffer was not empty and the last message is on transmit
− Writing 1 reset the interrupt

 Tra buffer overflow INT
− The messages written into the transmit buffer are lost, because it was already full
− Writing 1 reset the interrupt

 Tra buffer full INT
− The transmit buffer is full
− Writing 1 reset the interrupt

 Rec buffer not empty INT
− The buffer was empty and the first message was written in the receive buffer
− Writing 1 reset the interrupt

 Rec buffer overflow INT
− Received messages are lost, because the receive buffer was already full
− Writing 1 reset the interrupt

 Rec buffer full INT
− The receive buffer is full
− Writing 1 reset the interrupt

 Transmit busy
− Messages are waiting in buffer for transmit

 Message in Transmit
− Message is in transmit

 Receive busy
− Messages are waiting for read

 Transmit ok INT
− The actual message was succesfull transmitted
− Writing 1 reset the interrupt

77

Error counter
Byte 3 Bit 31 30 29 28 27 26 25 24

read

write

Byte 2 Bit 23 22 21 20 19 18 17 16

read Rec Error 7 Rec Error 6 Rec Error 5 Rec Error 4 Rec Error 3 Rec Error 2 Rec Error 1 Rec Error 0

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Tra Error 8

write

Byte 0 Bit 7 6 5 4 3 2 1 0

read Tra Error 7 Tra Error 6 Tra Error 5 Tra Error 4 Tra Error 3 Tra Error 2 Tra Error 1 Tra Error 0

write

 Rec Error [7..0] : Number of the receive errors
 Tra Error [8..0] : Number of the transmit errors

Base Address Offset 7

78

Version
Byte 3 Bit 31 30 29 28 27 26 25 24

read Month 7 Month 6 Month 5 Month 4 Month 3 Month 2 Month 1 Month 0

write

Byte 2 Bit 23 22 21 20 19 18 17 16

read Year 7 Year 6 Year 5 Year 4 Year 3 Year 2 Year 1 Year 0

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Quartus 7 Quartus 6 Quartus 5 Quartus 4 Quartus 3 Quartus 2 Quartus 1 Quartus 0

write

Byte 0 Bit 7 6 5 4 3 2 1 0

read Core rev 7 Core rev 6 Core rev 5 Core rev 4 Core rev 3 Core rev 2 Core rev 1 Core rev 0

write

 month - year - quartus - core revision

Base Address Offset 8

79

Fifo Pointer
Byte 3 Bit 31 30 29 28 27 26 25 24

read Rec Buffer
Counter 12

Rec Buffer
Counter 11

Rec Buffer
Counter 10

Rec Buffer
Counter 9

Rec Buffer
Counter 8

write Reset rec
Counter

Byte 2 Bit 23 22 21 20 19 18 17 16

read Rec Buffer
Counter 7

Rec Buffer
Counter 6

Rec Buffer
Counter 5

Rec Buffer
Counter 4

Rec Buffer
Counter 3

Rec Buffer
Counter 2

Rec Buffer
Counter 1

Rec Buffer
Counter 0

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Trans Buffer
Counter 8

write Reset trans
Counter

Byte 0 Bit 7 6 5 4 3 2 1 0

read Trans Buffer
Counter 7

Trans Buffer
Counter 6

Trans Buffer
Counter 5

Trans Buffer
Counter 4

Trans Buffer
Counter 3

Trans Buffer
Counter 2

Trans Buffer
Counter 1

Trans Buffer
Counter 0

write

 Status of the Receive and Transmit Buffer Fifos

Base Address Offset 9

80

Fifo Pointer
 Trans buffer counter [8..0]

− The number of messages waiting for transmit

 Reset trans counter
− Writing 1 to the bit set the transmit buffer counter to 0 until writing 0
− All messages in the transmit fifo are lost

 Rec buffer counter [12..0]
− The number of received messages waiting for read

 Reset rec counter
− Writing 1 to the bit set the receive buffer counter to 0 until writing 0
− All messages in the receive fifo are lost

81

Timestamp Register (if used)
Byte 3 Bit 31 30 29 28 27 26 25 24

read Tstamp 31 Tstamp 30 Tstamp 29 Tstamp 28 Tstamp 27 Tstamp 26 Tstamp 25 Tstamp 24

write

Byte 2 Bit 23 22 21 20 19 18 17 16

read Tstamp 23 Tstamp 22 Tstamp 21 Tstamp 20 Tstamp 19 Tstamp 18 Tstamp 17 Tstamp 16

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Tstamp 15 Tstamp 14 Tstamp 13 Tstamp 12 Tstamp 11 Tstamp 10 Tstamp 9 Tstamp 8

write

Byte 0 Bit 7 6 5 4 3 2 1 0

read Tstamp 7 Tstamp 6 Tstamp 5 Tstamp 4 Tstamp 3 Tstamp 2 Tstamp 1 Tstamp 0

write

 Tstamp[31..0] : Timestamp value of the received message

Base Address Offset 10

82

Timestamp Register (if used)
Byte 3 Bit 31 30 29 28 27 26 25 24

read Tstamp 31 Tstamp 30 Tstamp 29 Tstamp 28 Tstamp 27 Tstamp 26 Tstamp 25 Tstamp 24

write

Byte 2 Bit 23 22 21 20 19 18 17 16

read Tstamp 23 Tstamp 22 Tstamp 21 Tstamp 20 Tstamp 19 Tstamp 18 Tstamp 17 Tstamp 16

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Tstamp 15 Tstamp 14 Tstamp 13 Tstamp 12 Tstamp 11 Tstamp 10 Tstamp 9 Tstamp 8

write

Byte 0 Bit 7 6 5 4 3 2 1 0

read Tstamp 7 Tstamp 6 Tstamp 5 Tstamp 4 Tstamp 3 Tstamp 2 Tstamp 1 Tstamp 0

write

 Tstamp[31..0] : Current Timestamp counter value

Base Address Offset 11

83

Parameter Register (read-only)
Byte 3 Bit 31 30 29 28 27 26 25 24

read Clock 7 Clock 6 Clock 5 Clock 4 Clock 3 Clock 2 Clock 1 Clock 0

write

Byte 2 Bit 23 22 21 20 19 18 17 16

read MHz/ns Databus-
width 3

Databus-
width 2

Databus-
width 1

Databus-
width 0

write

Byte 1 Bit 15 14 13 12 11 10 9 8

read Receive-
fifo size 3

Receive-
fifo size 2

Receive-
fifo size 1

Receive-
fifo size 0

Transmit-
fifo size 3

Transmit-
fifo size 2

Transmit-
fifo size 1

Transmit-
fifo size 0

write

Byte 0 Bit 7 6 5 4 3 2 1 0

read Filter
number 3

Filter
number 2

Filter
number 1

Filter
number 0

Timestamp
ON/OFF

write

 Compile time parameter
Base Address Offset 12

84

Compile time parameter
 Timestamp ON/OFF

− 1  Timestamp feature is used
− 0  Timestamp feature is unused

 Filter number [3..0]
− 8  64 Filters and Masks
− 9  128 Filters and Masks
− 10  256 Filters and Masks

 Transmit Fifo Size [3..0]
− 5  30 Messages
− 6  62 Messages
− 7  126 Messages
− 8  254 Messages

 Receive Fifo Size [3..0]
− 5  32 Messages
− 6  64 Messages
− 7  128 Messages
− 8  256 Messages
− 9 512 Messages
− 10  1024 Messages
− 11  2048 Messages
− 12  4096 Messages

 Databus width [3..0]
− 10  32 Bit
− 11  16 Bit
− 12  8 Bit

 MHz/ns
− 1  Clock value in ns
− 0  Clock value in MHz

 Clock [7..0]
− 0.. 255 Clock value

85

Filter mask
Byte 3 Bit 31 30 29 28 27 26 25 24

read valid Mask extd Mask 28 Mask 27 Mask 26 Mask 25 Mask 24

write valid Mask extd Mask 28 Mask 27 Mask 26 Mask 25 Mask 24

Byte 2 Bit 23 22 21 20 19 18 17 16

read Mask 23 Mask 22 Mask 21 Mask 20 Mask 19 Mask 18 Mask 17 Mask 16

write Mask 23 Mask 22 Mask 21 Mask 20 Mask 19 Mask 18 Mask 17 Mask 16

Byte 1 Bit 15 14 13 12 11 10 9 8

read Mask 15 Mask 14 Mask 13 Mask 12 Mask 11 Mask 10 Mask 9 Mask 8

write Mask 15 Mask 14 Mask 13 Mask 12 Mask 11 Mask 10 Mask 9 Mask 8

Byte 0 Bit 7 6 5 4 3 2 1 0

read Mask 7 Mask 6 Mask 5 Mask 4 Mask 3 Mask 2 Mask 1 Mask 0

write Mask 7 Mask 6 Mask 5 Mask 4 Mask 3 Mask 2 Mask 1 Mask 0

 Valid : 1  use this mask 0  ignore this mask
 Mask : 1  compare this bit 0  ignore the value of the bit

Base Address Offset 512…

86

Filter Identifier
Byte 3 Bit 31 30 29 28 27 26 25 24

read valid IDE IDX 28 IDX 27 IDX 26 IDX 25 IDX 24

write valid IDE IDX 28 IDX 27 IDX 26 IDX 25 IDX 24

Byte 2 Bit 23 22 21 20 19 18 17 16

read IDX 23 IDX 22 IDX 21 IDX 20 IDX 19 IDX 18 IDX 17 IDX 16

write IDX 23 IDX 22 IDX 21 IDX 20 IDX 19 IDX 18 IDX 17 IDX 16

Byte 1 Bit 15 14 13 12 11 10 9 8

read IDX 15 IDX 14 IDX 13 IDX 12 IDX 11 ID 10 ID 9 ID 8

write IDX 15 IDX 14 IDX 13 IDX 12 IDX 11 ID 10 ID 9 ID 8

Byte 0 Bit 7 6 5 4 3 2 1 0

read ID 7 ID 6 ID 5 ID 4 ID 3 ID 2 ID 1 ID 0

write ID 7 ID 6 ID 5 ID 4 ID 3 ID 2 ID 1 ID 0

 Valid : 1  use this identifier 0  ignore this identifier
 IDE : 1  Use Extended Identifier
 IDX [28..11] + ID [10..0] : Extended Identifier

Base Address Offset 513…

87

Address Contents Object

512 Valid Mask0 1 Valid can switch on or off any object.
The object number, with a match
between the filter and a received
message, is readable on address 0

513 Valid ID0

514 Valid Mask1 2

515 Valid ID1

.

.

.

1022 Valid Mask511 512

1023 Valid ID511

Base Address Offset 512 .. 1023 for 256 masks
Base Address Offset 512 .. 767 for 128 masks
Base Address Offset 512 .. 639 for 64 masks

88

maskbit 0 1 1 1 1

Idbit-filter X 0 1 0 1

Idbit-received message X 0 1 1 0

result match match match No match No match

Mask and Filter

Bit Mask extd 0 1 1 1 1

Bit IDE X 0 1 0 1

IDE-received message X 0 1 1 0

result Match
Standard or
Extended ID

Match
Standard ID

Match
Extended ID

No match No match

Filter standard / extended message

Filter standard / extended Identifier

89

Filter and Mask Example
 For filtering on 60 to 65 you need 2 ID and mask entries

 Looking for standard IDs (not extened ID)

 For ID 60-63

− IOWR_IFI_NIOS_CAN_BUFFER(base, 0, 0xBFFFFFFC); //mask 60-63
− IOWR_IFI_NIOS_CAN_BUFFER(base, 1, 0x8000003C); //ID 60-63

 For ID 64-65

− IOWR_IFI_NIOS_CAN_BUFFER(base, 2, 0xBFFFFFFE); //mask 64-65
− IOWR_IFI_NIOS_CAN_BUFFER(base, 3, 0x80000040); //ID 64-65

90

Order of the ID Bits
 Example for transmitting, filtering and receiving the CAN ID

 ID-Format (like CANalyzer) you want to send with extended
− value = 0x01234567;

 Convert to IFI CAN-core ID format
− transmitID = ((value & 0x3FFFF)<<11) + ((value & 0x1FFC0000)>>18);
− transmitID |= 0x20000000; // set IDE for extended ID !!!

 Same for the filter

 Read receiveID
 Convert the IFI CAN-core ID format to the other ID format

− value = ((receiveID & 0x7FF)<<18) + ((receiveID & 0x1FFFF800)>>11);
− value &= ~0x20000000; // mask the IDE

91

Software for NIOS II and IDE
 Files

92

CAN driver routines (ifi_avalon_can_advanced_module.c)
 ifi_avalon_can_advanced_module_open ()

− Initialize of the CAN node
− Base, pointer to structure canall_s with timing, interrupt mask, status, mask and filter
− Return the version of the core

 ifi_avalon_can_advanced_module_read ()
− read a message from the buffer and increment the buffer pointer
− Base, pointer to structure canmsg_s with identifier, data[0], data[1], dlc,timestmp
− Return 1 for succesfull read, -1 for error

 ifi_avalon_can_advanced_module_write ()
− Transmit a message
− Base, pointer to structure canmsg_s with identifier, data[0], data[1], dlc
− Return 1 for succesfull read, -1 for error

 ifi_avalon_can_advanced_module_stat ()
− Read the interrupt mask register, the status register and error register
− Base, pointer to structure canstat_s with interruptmask, status, error
− Return 0 for for succesfull read, -1 for error

 ifi_avalon_can_advanced_module_wr_int ()
− Enable the interrupts
− Base, Interruptregister
− Return 0 for for succesfull write, -1 for error

 ifi_avalon_can_advanced_module_wr_status ()
− Write the status register only
− Base, statusregister
− Return 0 for for succesfull write, -1 for error

 ifi_avalon_can_advanced_module_wr_filter ()
− Write a single mask and filterpair
− Base, filternumber, filter mask, filter identifier
− Return 0 for for succesfull write, -1 for error

 ifi_avalon_can_advanced_module_irq ()
− Install the interrupts
− Base, Irq number, pointer to structure capture_s with base, status, irqcount, irqdone
− Return 0 for for succesfull install

93

Structures (ifi_avalon_can_advanced_module.h)
 struct canmsg_s
{
alt_u32 EPR_CANdlc; // data_length_code
alt_u32 EPA_CANid; // identifier
alt_u32 CANdata[2]; // 8 Byte Data
alt_u32 TIMEstamp; // timestamp if enabled
};
 struct canall_s
{
alt_u32 EPT_CANtime; // timing
alt_u32 EPI_CANint; // interrupt mask
alt_u32 EPS_CANstatus; // status
alt_u32 EPE_CANerror; // error
alt_u32 CANbuffer[512]; // mask and filter
};
 struct canstat_s
{
alt_u32 EPI_CANint; // interrupt mask
alt_u32 EPS_CANstatus; // status
alt_u32 EPE_CANerror; // error counters
alt_u32 EPP_CANpoint; // buffer pointers
};
 struct capture_s
{
int base; // remember base for ISR (done by driver)
alt_u32 EPS_CANstatus; // remember Status bevor irq-reset
alt_u32 irqcnt; // counts incomming Interrupts
alt_u32 irqdone; // counts processed interrupts
};

94

Software Examples
 There are 2 examples included

− ifi_hello_advanced_can.c
− ifi_test_advanced_can.c

 ifi_hello_advanced_can.c
− A simple program which demonstrates a communication

between 2 CAN nodes
 ifi_test_advanced_can.c

− A more complex program which test all features of a
communication between 2 CAN nodes

© 2004 Altera Corporation

VHDL Testbench

 Files
 Usage

95

96

Files
 In the folder VHDL Simulation

− nios_advanced_can_tb.vhd
The Testbench

− control.in
ASCII file for the simulation flow

− advanced_can.do
TCL script for running the simulation in Modelsim

− wave.do
TCL script for setup the wave window of Modelsim

97

Usage
 Create the CAN simulation model

− Either the generate of the SOPC Builder
− Or the finish of the MegaWizard will create the simulation

model of your CAN Node(s)
− <name_of_the_modul>.vho

Modify the settings of the testbench
− Within the testbench you have to select the correct interface

width (32,16 or 8 Bit) by commenting in and out the
necessary settings

− Change the names of the CAN nodes to your names
− If you don’t have timestamp selected, comment it out

98

Select the interface data width
ARCHITECTURE nioscantest OF nios_advanced_cantest IS

--use this for 32bit Datainterface
CONSTANT AW : Integer := 9;
CONSTANT DW : Integer := 31;
constant readwait : integer := 3;
constant writewait : integer := 1;

--use this for 16bit Datainterface
--CONSTANT AW : Integer := 10;
--CONSTANT DW : Integer := 15;
--constant readwait : integer := 3;
--constant writewait : integer := 0;

--use this for 8bit Datainterface
--CONSTANT AW : Integer := 11;
--CONSTANT DW : Integer := 7;
--constant readwait : integer := 3;
--constant writewait : integer := 0;

32 Bit

16 Bit

8 Bit

99

Change the names
 There are two CAN module declarations

− Change the names to your module name

 There are two CAN module instantiations
− Change the names to your module name

100

Timestamp
 There are two CAN module declarations

− If you don’t have timestamp selected, comment it out

 There are two CAN module instantiations
− If you don’t have timestamp selected, comment it out

101

More Settings
 Setup the Clock

− Signal clkt 10ns  50 Mhz
 Setup your busdelay for the CAN bus

− Signal busdelay
 Setup your Timestamp Clock

− Signal timestampt 200ns  2,5 MHz

102

Usage
 Define your simulation flow

− The flow will be controlled by control.in
 There are 4 Commands implemented

− R : read
− W : write
− I : wait for Interrupt
− N : wait for cycles

 Every command starts with space and has additional
parameters
− R12301AF2345

103

Read Command
 RA 12301AF2345

Hex value for the writedata (32 Bit) not used
Space

Integer value for the address
Space

A or B to select the CAN node
Space

Command Read
Space

104

Write Command
 WA 12301AF2345

Hex value for the writedata (32 Bit)
Space

Integer value for the address
Space

A or B to select the CAN node
Space

Command Write
Space

105

Wait for Interrupt Command
 IA 12301AF2345

Hex value for the writedata (32 Bit) not used
Space

Integer value for the address not used
Space

A or B to select the CAN node
Space

Command Wait for Interrupt
Space

106

Wait for Cycles Command
 NA 12301AF2345

Hex value for the writedata (32 Bit) not used
Space

Integer value for the number of Cycles
Space

A or B to select the CAN node not used
Space

Command Wait for Cycles
Space

107

Control.in Example

108

Usage
 Use Modelsim to execute the simulation scripts

− Copy your CAN Module .VHOs into the VHDL Simulation
folder

− Start Modelsim
− Change the directory to VHDL Simulation
− Start the TCL advanced_can.do

109

License Agreement
PLEASE REVIEW THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE USING THE IFI IP-MODULE. BY USING THE IFI IP-
MODULE AND/OR PAYING A LICENSE FEE, YOU INDICATE YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS, WHICH
CONSTITUTE THE LICENSE AGREEMENT (the "AGREEMENT") BETWEEN YOU AND IFI. IN THE EVENT THAT YOU DO NOT AGREE
WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT USE THE IFI IP-MODULE AND WE ASK YOU TO DESTROY ANY COPIES YOU
HAVE MADE IMMEDIATELY.

DEFINITIONS:
"Party" means either IFI or YOU.
"Specification" means IFI's technical description for the IFI IP-MODULE covered by this Agreement to the extent such technical description relates
to the operation, performance and other material attributes of the IFI IP-MODULE.

1. License to the IFI IP-MODULE:
1.1 Subject to the terms and conditions of this Agreement (including but not limited to YOUR payment of the license fee set forth in Paragraph 4.0), IFI

grants to YOU a single-user, non-transferable, non-exclusive and (except as specified by IFI) perpetual license to use the IFI IP-MODULE as
follows. YOU may:
(a) design with, parameterize, compile and route the IFI IP-MODULE;
(b) program Altera devices with the IFI IP-MODULE;
(c) use the IFI IP-MODULE on a single computer only; and
(d) except as otherwise provided in Paragraph 1.2, YOU may use, distribute, sell and/or otherwise market products containing licensed products
to any third party in perpetuity. YOU may also sublicense YOUR right to use and distribute products containing licensed products as necessary to
permit YOUR distributors to distribute and YOUR customers to use products containing licensed products. YOU are expressly prohibited from
using the IFI IP-MODULE to design, develop or program Non-Altera Devices .

1.2 YOU may make only one copy of the IFI IP-MODULE for back-up purposes only. The IFI IP-MODULE may not be copied to, installed on or used with
any other computer, or accessed or otherwise used over any network, without prior written approval from IFI.

1.3 Any copies of the IFI IP-MODULE made by or for YOU shall include all intellectual property notices, including copyright and proprietary rights
notices, appearing on such IFI IP-MODULE. Any copy or portion of the IFI IP-MODULE, including any portion merged into a design and any design
or product that incorporates any portion of the IFI IP-MODULE, will continue to be subject to the terms and conditions of this Agreement.

1.4 The source code of the IFI IP-MODULE, and algorithms, concepts, techniques, methods and processes embodied therein, constitute trade secrets
and confidential and proprietary information of IFI and its licensors and LICENSEE shall not access or use such trade secrets and information in
any manner, except to the extent expressly permitted herein. IFI and its licensors retain all rights with respect to the IFI IP-MODULE, including any
copyright, patent, trade secret and other proprietary rights, not expressly granted herein.

110

2. License Restrictions:
YOU MAY NOT USE THE IFI IP-MODULE EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS AGREEMENT OR SUBLICENSE OR TRANSFER THE IFI IP-
MODULE OR RIGHTS WITH RESPECT THERETO. YOU MAY NOT DECOMPILE, DISASSEMBLE, OR OTHERWISE REVERSE ENGINEER THE IFI IP-MODULE
OR ATTEMPT TO ACCESS OR DERIVE THE SOURCE CODE OF THE IFI IP-MODULE OR ANY ALGORITHMS, CONCEPTS, TECHNIQUES, METHODS OR
PROCESSES EMBODIED THEREIN; PROVIDED, HOWEVER, THAT IF YOU ARE LOCATED IN A MEMBER NATION OF THE EUROPEAN UNION OR OTHER
NATION THAT PERMITS LIMITED REVERSE ENGINEERING NOTWITHSTANDING A CONTRACTUAL PROHIBITION TO THE CONTRARY, YOU MAY PERFORM
LIMITED REVERSE ENGINEERING, BUT ONLY AFTER GIVING NOTICE TO IFI AND ONLY TO THE EXTENT PERMITTED BY THE APPLICABLE LAW
IMPLEMENTING THE EU SOFTWARE DIRECTIVE OR OTHER APPLICABLE LAW NOTWITHSTANDING A CONTRACTUAL PROHIBITION TO THE CONTRARY.

3. Term:
This Agreement is effective until terminated. YOU may terminate it at any time by destroying the IFI IP-MODULE together with all copies and portions thereof in any
form (except as provided below). It will also terminate immediately if YOU breach any term of this Agreement and upon conditions set forth elsewhere in this Agreement.
Upon any termination of this Agreement, YOU shall destroy the IFI IP-MODULE, including all copies and portions thereof in any form (whether or not merged into a
design or Licensed Product), and YOUR license and rights under this Agreement shall terminate except that YOU and YOUR customers may continue to sell and use
Licensed Products which have been developed in accordance with this Agreement and shipped prior to the termination. In no event may any portions of the IFI IP-
MODULE be used in development after termination. In the event of termination for any reason, the rights, obligations and restrictions under Paragraphs 2, 4, 9, and 10
shall survive termination of this Agreement.

4. Payment:
In consideration of the license granted by IFI under Paragraph 1.1 and other rights granted under this Agreement, YOU shall pay the license fee for the IFI IP-MODULE
that has been specified by IFI. Such payment shall, as directed by IFI, be made directly to IFI .YOU shall pay all taxes and duties associated with this Agreement, other
than taxes based on IFI's income.

5. Maintenance and Support:
IFI shall, but only until the date, in the format YYYY.MM, provided in the license file for a IFI IP-MODULE ("Maintenance Expiration Date"):

5.1 use commercially reasonable efforts to provide YOU with fixes to defects in the IFI IP-MODULE that cause the IFI IP-MODULE not to conform substantially to the
Specifications and that are diagnosed as such and replicated by IFI;

5.2 provide YOU with fixes and other updates to the IFI IP-MODULE that IFI chooses to make generally available to its customers without a separate charge; and
5.3 respond by telephone or email to inquiries from YOU.

6. Limited Warranties and Remedies:
6.1 IFI represents and warrants that, until the Maintenance Expiration Date ("Warranty Period"), the IFI IP-MODULE will substantially conform to the Specifications. YOUR

sole remedy, and IFI's sole obligation, for a breach of this warranty shall be (a) for IFI to use commercially reasonable efforts to remedy the non-conformance or (b) if IFI
is unable substantially to remedy the non-conformance, for YOU to receive a refund of license fees paid during the previous one (1) year for the defective IFI IP-
MODULE. If YOU receive such a refund, YOU agree that YOUR license and rights under this Agreement for the defective IFI IP-MODULE shall immediately terminate
and YOU agree to destroy the defective IFI IP-MODULE, including all copies thereof in any form and any portions thereof merged into a design or product, and to certify
the same to IFI.

6.2 The foregoing warranties apply only to IFI IP-MODULEs delivered by IFI. The warranties are provided only to YOU, and may not be transferred or extended to any third
party, and apply only during the Warranty Period for claims of breach reported (together with evidence thereof) during the Warranty Period. YOU shall provide IFI with
such evidence of alleged non-conformities or defects as IFI may request, and IFI shall have no obligation to remedy any non-conformance or defect it cannot replicate.
The warranties do not extend to any IFI IP-MODULE which have been modified by anyone other than IFI.

111

7. Representation:
Each party represents that it has the right to enter into this Agreement and to perform its obligations hereunder.

8. Indemnification:
8.1 Expressly subject to Section 9, IFI shall defend YOU against any proceeding brought by a third party to the extent based on a claim that the IFI IP-

MODULE, as delivered by IFI and as used in accordance with this Agreement, infringes a third party's copyright, trade secret, patent, or any other
intellectual property right ("IP right"), and pay any damages awarded in the proceeding as a result of the claim (or pay any amount agreed to by IFI as
part of a settlement of the claim), provided that IFI shall have no liability hereunder unless YOU notify IFI promptly in writing of any such proceeding or
claim, give IFI sole and complete authority to control the defence and settlement of the proceeding or claim, and provide IFI with any information,
materials, and other assistance requested by IFI.

8.2 In the event of any such claim or proceeding or threat thereof, IFI may (and, in the event any such claim or proceeding results in the issuance of an
injunction by a court of competent jurisdiction prohibiting YOU from using the IFI IP-MODULE, IFI shall), at its option and expense and subject to the
limitations of Paragraph 9, seek a license to permit the continued use of the affected IFI IP-MODULE or use commercially reasonable efforts to replace
or modify the IFI IP-MODULE so that the replacement or modified version is non-infringing or has a reduced likelihood of infringement, provided that the
replacement or modified version has functionality comparable to that of the original. If IFI is unable reasonably to obtain such license or provide such
replacement or modification, IFI may terminate YOUR license and rights with respect to the affected IFI IP-MODULE, in which event YOU shall return to
IFI the affected IFI IP-MODULE, including all copies and portions thereof in any form (including any portions thereof merged into a design or product),
and certify the same to IFI, and IFI shall refund the license fee paid by YOU for the affected IFI IP-MODULE.
IFI shall have no liability or obligation to YOU hereunder for any infringement or claim based on or resulting from (a) the combination or use of the IFI IP-
MODULE with other products or components; (b) modification of the IFI IP-MODULE by anyone other than IFI, (c) the use of other than the most recent
version of the IFI IP-MODULE if the infringement or claim would have been avoided (or the likelihood thereof reduced) by use of the most recent
version; (d) requirements specified by YOU; (e) use of the IFI IP-MODULE in any way not contemplated under this Agreement; or (f) any use of the IFI
IP-MODULE, to the extent that IFI has indicated in the applicable Specification that third-party licenses 8.3a may be required to use such IFI IP-
MODULE if LICENSEE has not obtained the necessary third-party licenses.

8.3a The license does not include the CAN-Network license (Bosch).
8.4 The provisions of this Paragraph 8 state the entire liability and obligations of IFI, and YOUR sole and exclusive rights and remedies, with respect to any

proceeding or claim relating to infringement of copyright, trade secret, patent, or any other intellectual property right.

LIMITATIONS OF LIABILITY
9.1 In no event shall the aggregate liability of IFI relating to this Agreement or the subject matter hereof under any legal theory (whether in tort, contract or

otherwise), including any liability under Paragraph 8 or for any loss or damages directly or indirectly suffered by YOU relating to the IFI IP-MODULE,
exceed the aggregate amount of the license fees paid by YOU in the previous one (1) year under this Agreement.

9.2 IN NO EVENT SHALL IFI BE LIABLE UNDER ANY LEGAL THEORY, WHETHER IN TORT, CONTRACT OR OTHERWISE (a) FOR ANY LOST
PROFITS, LOST REVENUE OR LOST BUSINESS, (b) FOR ANY LOSS OF OR DAMAGES TO OTHER SOFTWARE OR DATA, OR (c) FOR ANY
INCIDENTAL, INDIRECT, CONSEQUENTIAL OR SPECIAL DAMAGES RELATING TO THIS AGREEMENT OR THE SUBJECT MATTER HEREOF,
INCLUDING BUT NOT LIMITED TO THE DELIVERY, USE, SUPPORT, OPERATION OR FAILURE OF THE MEGACORE LOGIC IFI IP-MODULE,
EVEN IF IFI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LIABILITY.

112

10. General:
10.1 YOU may not sublicense, assign, or transfer this license, or disclose any trade secrets embodied in the IFI IP-MODULE,

except as expressly provided in this Agreement. Any attempt to sublicense, assign, or otherwise transfer without prior written
approval of the other party any of the rights, duties, or obligations hereunder is void.

10.2 This Agreement is entered into for the benefit of IFI and its licensors and all rights granted to YOU and all obligations owed to
IFI shall be enforceable by IFI.

10.3 If YOU have any questions concerning this Agreement, including software maintenance or warranty service, YOU should
contact IFI Ing.Büro Für Ic-Technologie, Franz Sprenger, Kleiner Weg 3, 97877 Wertheim, Germany.

10.4 YOU agree that the validity and construction of this Agreement and performance hereunder, shall be governed by the laws of
German jurisdictions, without reference to conflicts of law principles. YOU agree to submit to the exclusive jurisdiction of the
courts in Germany, for the resolution of any dispute or claim arising out of or relating to this Agreement. The Parties hereby
agree that the Party who does not prevail with respect to any dispute, claim, or controversy relating to this Agreement shall pay
the costs actually incurred by the prevailing Party, including any attorneys' fees.

10.5 No amendment to this Agreement shall be effective unless it is in writing signed by a duly authorized representative
of both Parties. The waiver of any breach or default shall not constitute a waiver of any other right hereunder.

10.6 In the event that any provision of this Agreement is held by a court of competent jurisdiction to be legally ineffective or
unenforceable, such provision shall be reformed only to the extent necessary to make it enforceable and the validity of the
remaining provisions shall not be affected.

10.7 The article headings throughout this Agreement are for reference purposes only and the words contained therein shall not be
construed as a substantial part of this Agreement and shall in no way be held to explain, modify, amplify, or aid in the
interpretation, construction or meaning of the provisions of this Agreement.

10.8 BY USING THE IFI IP-MODULE, YOU AND IFI ACKNOWLEDGE THAT YOU AND IFI HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU AND IFI FURTHER AGREE
THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND IFI, WHICH
SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS
BETWEEN YOU AND IFI RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT, UNLESS YOU HAVE A
SEPARATE LICENSE SIGNED BY AN AUTHORIZED IFI REPRESENTATIVE.

113

 Training Classes
− Quartus®

− Expert, TimeQuest
− VHDL
− SOPC/QSYS
− SOC
− …

 Design Service
 IPs

− CAN + CAN-FD
Controller

− Gigabit Ethernet MAC
− PCI Master/Target
− …

 Consulting

All about FPGA-design since 1985

INGENIEURBÜRO FÜR IC-TECHNOLOGIE
Franz Sprenger
Kleiner Weg 3
97877 Wertheim
Tel.: +49 (0) 9342 / 9608-0
Fax: +49 (0) 9342 / 5381
eMail: ifi@ifi-pld.de
http://www.ifi-pld.de

	IFI Advanced CAN Module
	Contents
	Overview
	Block Diagram
	IFI Advanced CAN Feature List
	IFI Advanced CAN Feature List
	IFI Advanced CAN Implementation
	OpenCore Plus Feature
	IFI Advanced CAN Reference Design
	IFI Advanced CAN Reference Design
	IFI Advanced CAN Pricing
	IFI NIOS®II Advanced CAN
	CAN-Background
	CAN-Background
	CAN-Error States
	Contacting Technical Support
	Install
	Install the IFI Advanced CAN
	SOPC/QSYS Ready OpenCore Package
	CANopen Protocol Software
	Licensing
	Set Up Licensing
	Integrating the Core using SOPC Builder
	Adding the Core to your System�
	Integrating the Core with your System using SOPC Builder
	Adding the Core to your SOPC System�
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Adding the Core to your System�
	Integrating the Core with your System using QSYS
	Adding the Core to your QSYS System�
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Adding the Core to your System�
	Reference Designs
	Running a Reference Design�
	Creating a Software Project
	Run a Hardware Configuration
	Using ModelSim to Simulate the Core within your System
	Using the Core without SOPC/QSYS
	MegaWizard Plug-In Manager for older Quartus versions
	Use IP Catalog and Advanced CAN IP
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Generation of the Core Variation
	Use the QuartusII IP File
	Your new QuartusII IP Symbol
	Port description
	Write Timing for the 32 Bit Interface
	Read Timing
	Detailed Information
	Addressmap
	Data length code
	Frame Number for Transmit Timestamp
	Identifier
	Data 1 - 4
	Data 5 - 8
	Timing and Control
	Timing and Control
	Timing Settings for CAN
	Timing Settings for CAN
	High Priority == 0
	High Priority == 1
	Interrupt mask
	Status
	Status Register
	Status Register
	Error counter
	Version
	Fifo Pointer
	Fifo Pointer
	Timestamp Register (if used)
	Timestamp Register (if used)
	Parameter Register (read-only)
	Compile time parameter
	Filter mask
	Filter Identifier
	Base Address Offset 512 .. 1023 	for 256 masks�Base Address Offset 512 .. 767 	for 128 masks �Base Address Offset 512 .. 639 	for 64 masks
	Mask and Filter
	Filter and Mask Example
	Order of the ID Bits
	Software for NIOS II and IDE
	CAN driver routines (ifi_avalon_can_advanced_module.c)
	Structures (ifi_avalon_can_advanced_module.h)
	Software Examples
	VHDL Testbench
	Files
	Usage
	Select the interface data width
	Change the names
	Timestamp
	More Settings
	Usage
	Read Command
	Write Command
	Wait for Interrupt Command
	Wait for Cycles Command
	Control.in Example
	Usage
	License Agreement�
	Foliennummer 110
	Foliennummer 111
	Foliennummer 112
	All about FPGA-design since 1985

