

IFI CAN IP

User Guide

Core Version: Document Date: 02095A53 11.2016

Contents

- Overview
- Install
- Integrating the Core using SOPC Builder
- Integrating the Core using QSYS Interconnection
- Reference Designs
- Using the Core without Nios/SOPC/QSYS
- Detailed Information
- License Agreement

Overview

- Block Diagram
- Feature List
- Altera Implementation
- OpenCore Plus Feature
- Using the core without external hardware
- Using SignalTap II
- Options
- Pricing
- References
- CAN Background
- Contacting Technical Support

Block Diagram

© Copyright 2016 Ing. Büro Für Ic-Technologie

IFI CAN IP Feature List

- CAN 2.0B
 - Standard or Extended Identifier
 - Remote Frames
 - Error-Handling
- 30 Messages Transmit Buffer
 - FIFO Pointer accessible
- 32 Messages Receive Buffer
 - FIFO Pointer accessible
- 64 Message Filters
 - Every Message Filter contains one MASK- and one Identifier-Register
- Avalon Interface
 - NIOS II Example software included
 - HAL Drivers for NIOS II included
- Silent Mode

IFI CAN Implementation

- Design Flows supported
 - QSYS/SOPC Builder
 - Megawizard
 - Encrypted VHDL
- Device families targeted (depending on date of purchase)
 - CYCLONE
 - STRATIX
 - ARRIA
 - MAX 10
- Device resource utilization
 - about 2100 LE + 3 M9K for Cyclone III, Cyclone IV, MAX 10
 - about 1000 ALM + 3 M10K Blocks for Stratix, Cyclone V

OpenCore Plus Feature

- Test the CAN Module on your board
 - There is no time limit with an established connection between the device and the Quartus programmer.
 - If you remove the connection the time remaining is ~ 1 hour.

IFI CAN IP Reference Design

Test the IFI CAN IP without external Hardware

IFI CAN IP Reference Design

Instance Status			LEs: 318	Memory: 65536									
🕄 signaltap_megafun Not running			gafun Not running		318 cells	65536 bits							
	log: 2	004/07/	26 16:17:43 #1								С	lick to insert time k	bar
	Туре	Alias	Name	-4096	-2048	Q .	2048	4096	6144	8192	10240	12288	14336
	nst4 ac acq_data_in[0]												
		nst4 ac	acq_data_in[1]							J			
				_									

Use Signaltap II to watch the TX Pins

IFI CAN IP Pricing

- Node-Locked License: 5000.-- €
 - 1 year maintenance included
 - NIC-ID
 - Maintenance: 500.-- € / year
- Floating License: 6250.-- €
 - 1 year maintenance included
 - Single or Multi Server
 - Maintenance: 625.-- € / year
- Licensing:
 - Unlimited NIC-ID License
 - Royalty Free with I/F/I
 - The CAN-NETWORK-PROTOCOL-License is not included
 - Available by Bosch (Bosch charges royalties)

IFI CAN IP

- Hardware Tested on
 - DBC1C12 / DBC2C20 / DBC3C40 Cyclone Development Board
 - Cyclone / Cyclone II NIOS Development Kit
 - Cyclone III Starter Kit
 - Stratix / Stratix II NIOS Development Kit
 - Against
 - Each other
 - Vector CANalyzer
 - Other CANcontrollers
- The IFI CAN is running successfully in many customer projects
- The IFI CAN IP Core 6.8 passed the ISO CAN conformance tests.
 - ISO 16845:2004 Road vehicles-Controller area network (CAN) Conformance test plan
 - C&S enhancement / corrections
 - Reference: CAN CONFORMANCE TESTING Test Specification C&S Version 1.5

CAN-Background

CAN Messages:

- Every CAN message consist of a certain number of bits that are divided into fields. There are fields like Arbitration Field, Data Field, CRC, End of Frame...
- The Arbitration Field is different for CAN 2.0 A and CAN 2.0 B messages. It's a logical address with 11 bits for CAN 2.0 A and 29 bits for CAN 2.0 B. The lowest value is the highest priority = 0.
- The Data Field contains the application data of the message with 0 to 64 bits (0 to 8 bytes).
- With exception of the CRC delimiter, the ACK field and the EOF the bits are stuffed. That means, 5 consecutive bits with identical value are followed from a complementary bit.
- Error Frame and the Overload Frame are of a fixed form and not coded with bit stuffing.

Error Detection:

- The error management unit is able to detect five different error types.
 - Bit Error
 - Bit Stuffing Error
 - CRC Error
 - Form Error
 - ACK Error

CAN-Background

Error Handling:

- Error detected
- Transmit of error frame
- Message will be discarded
- Error counters are incremented
- Transmission will be repeated

Error Limitation:

- To prevent a permanently disturbed bus each CAN controller has three error states.
 - Error Active
 - Error Passive
 - Bus Off

CAN-Error States

© Copyright 2016 Ing. Büro Für Ic-Technologie

Contacting Technical Support

Although we have made every effort to ensure that this Package works correctly, there might be problems that we have not encountered. If you have a question or problem that is not answered by the information provided in this README file, please contact the IP Vendor.

For questions about the core's features, functionality, and parameter settings please contact:

IFI Ingenieurbüro Für Ic-Technologie F. Sprenger Kleiner Weg 3 -- 97877 Wertheim -- Germany Phone: (+49)9342/96080 E-Mail: ifi@ifi-pld.de http://www.ifi-pld.de

Install

- How to install
- QSYS/SOPC Builder Ready OpenCore Package
- Licensing
- Set up Licensing

Install the IFI CAN IP

- Before you can start using IFI CAN IP functions, you must install the IFI CAN IP files on your computer. The following instructions describe this process.
- Close Quartusll and IDE.
- The installed Quartusll version must be 9.1 or newer
- Install the IFI CAN IP Files
 - The following instructions describe how you install IFI CAN IP on computers running the Windows, Linux, or Solaris operating systems.
 - IF you don't change the installation path, the QSYS/SOPC Builder and the Megawizard will find the IP automatically
 - Windows
 - Follow these steps to install the IFI CAN IP on a PC running a supported version of the Windows operating system:
 - Choose Run (Windows Start menu).
 - Type <path name>\<filename>.exe, where <path name> is the location of the downloaded IFI CAN IP function and <filename> is the filename of the IFI CAN IP function.
 - Click OK. The IFI CAN Installation dialog box appears. Follow the on-screen instructions to finish installation.
 - Solaris & Linux
 - Follow these steps to install the IFI CAN on a computer running supported versions of the Solaris and Linux operating systems:
 - Decompress the package by typing the following command:
 - gzip -d<filename>.tar.gz
 - where <filename> is the filename of the IFI CAN IP function.
 - Extract the package by typing the following command:
 - tar xvf <filename>.tar

SOPC Builder Ready OpenCore Package

The Package contains all files required for plug-and-play integration of this core into SOPC and QSYS Builder tool, allowing the user to easily evaluate the core within his Avalon-based system.

F. Sprenger

Licensing

OpenCorePlus License

This package is shipped with a OpenCorePlus license or the license is attached to email <Core installation directory>\license\license_ocp.dat.

When the FEATURE line from this license is appended to the user's Quartus II license file, the encrypted VHD file can be read into Quartus II and place and route can be performed.

The license permit generation of <revision_name>_time_limited.sof files.

The hardware evaluation feature will run during you have an established connection between your board and the QuartusII programmer. If you remove the connection it will stop working after 1 hour.

(Refer to the messages created by the programmer)

Full License

If you purchased a FULL LICENSE you receive an additional license file,

license_???.dat.

Use this instead of the license_ocp.dat. When the FEATURE line from this license is appended to the user's Quartus II license file, the encrypted VHD file can be read into Quartus II and place and route can be performed. The license permit generation of <revision_name>.pof files and gate-level simulation netlists.

One FEATURE line can span more than one line

Set Up Licensing

- To install your license, you can either append the license to your license.dat file or you can specify the IFI CAN IP's license_ocp.dat file in the Quartus II software.
 - Before you set up licensing for the IFI CAN IP, you must already have the Quartus II software installed on your computer with licensing set up.

Append the License to Your license.dat File

- To append the license, follow these steps:
- Open the IFI CAN IP license file in a text editor.
- Open your Quartus II license.dat file in a text editor.
- Copy all lines from the license file and paste it into the Quartus II license file.
- Do not delete any FEATURE lines from the Quartus II license file.
- Save the Quartus II license file.
 - When using editors such as Microsoft Word or Notepad, ensure that the file does not have extra extensions appended to it after you save (e.g., **license.dat.txt** or **license.dat.doc**). Verify the filename in a DOS box or at a command prompt. Also, make sure that the file is saved in plain-text format without formatting characters.

Specify the License File in the Quartus II Software

- To specify the IFI CAN IP license file in Quartus II, follow these steps:
- Altera recommends that you give the file a unique name, e.g., <*core name*>_license.dat.
- Run the Quartus II software.
- Choose License Setup (Tools menu). The Options dialog box opens to the License Setup page.
- In the **License file** box, add a semicolon to the end of the existing license path and filename.
- Type the path and filename of the IFI CAN IP function license file after the semicolon.
 - Do not include any spaces either around the semicolon or in the path/filename.
- Click **OK** to save your changes.

Integrating the Core using SOPC Builder

- Adding the Core to your System
- About
- Documentation
- Parameterize

Integrating the Core with your System using SOPC Builder

- This section contains instructions on the following:
 - Adding the Core to your System
 - Using ModelSim to Simulate the Core within your System
 - Running the Reference Design
- These instructions assume that the user is familiar with the
 - OpenCore evaluation process,
 - Quartus II development software,
 - and the SOPC Builder tool.
- For more information on these prerequisites, please visit www.altera.com.

Adding the Core to your System

- This walkthrough involves the following steps:
 - Create a New Quartus II Project
 - Create a New SOPC Builder Design
 - Launch IP Toolbench
 - Step 1: Parameterize
 - Step 2: Generate

Create a New Quartus II Project

- Before you begin, you must create a new Quartus II project. With the New Project wizard, you specify the working
 directory for the project, assign the project name, and designate the name of the top-level design entity. You will also
 specify the IFI CAN IP user library. To create a new project, follow these steps:
- Choose Programs > Altera > Quartus II < version> (Windows Start menu) to run the Quartus II software or
- Choose **Programs > intelFPGA > Quartus II** <version> (Windows Start menu) to run the Quartus II software
- Choose New Project Wizard (File menu).
- Click **Next** in the introduction (the introduction will not display if you turned it off previously).
- Specify the working directory for your project. This walkthrough uses the directory **c:\qdesigns\myproject**.
- Specify the name of the project. This walkthrough uses myproject.
- Click Next.
- Click User Libraries...
- Type <path>\ifi_can-v9.1<version>\lib\ into the Library name box, where <path> is the directory in which you installed the IFI CAN IP.
- Click Add.
- Click OK.
- Click **Next**.
- Choose the target device family in the Family list.
- Click **Finish**.
- You have finished creating your new Quartus II project.

Adding the Core to your SOPC System

Altera SOPC Builder - niosll.sopc (C:\altera\15.1\ip\ifi\ifi_can-v9.1\ref_des

File Edit Module System View Tools Nios II Help

F. Sprenger

© Copyright 2016 Ing. Büro Für Ic-Technologie

|/F/

F. Sprenger

IFI_CAN - ifi_avalon_ca	in_0			×						
I/F/I F. Sprenger	CAN ^{on_can}			Info -						
* Block Diagram	Block Diagram									
ifi_avalon_can_0 clock ➡ can_slave_clock conduit ➡ can_slave_export avalon ➡ can_slave interrupt ➡ slave_irq										
🔻 Baudrate:										
System Clock in Hz:	6400000									
Startvalue Prescale:	2									
Registervalue Prescale::	0									
Startvalue Timesegment A:	20									
Registervalue Time_a::	19									
Startvalue Timesegment B:	4									
Registervalue Time_b::	2									
Baudrate KBaud::	1280									
Sample Point %::	84									
	Timea	IΤ	ïmeb							
Sync	Sar	nplep	point							
			Connel	Figial						

IFI_CAN Info

IFI_CAN

7

Class Name ifi_avalon_can

Version	9.1
---------	-----

Author IFI

Description IFI_CAN - v9.1

Group IFI/CAN

Data Sheet file://C:/altera/15.1/ip/ifi/ifi_can-v9.1/doc/IFI_CAN_docu.pdf

Baudrate:

System Clock in Hz	Your System Clock in Hz
Startvalue Prescale	2255
Registervalue Prescale:	Registervalue Prescale
Startvalue Timesegment A	031
Registervalue Time_a:	Registervalue Time_a
Startvalue Timesegment B	231
Registervalue Time_b:	Registervalue Time_b
Baudrate KBaud:	Resulting Baudrate
Sample Point %:	Resulting Sample Point in %

© Copyright 2016 Ing.Büro Für Ic-Technologie

© Copyright 2016 Ing. Büro Für C-Technologie

Adding the Core to your System

- Specify desired instance name, base address, and IRQ.
- Complete system generation as described in the SOPC Builder documentation.

Integrating the Core using QSYS Interconnect

- Adding the Core to your QSYS System
- About
- Documentation
- Parameterize

Integrating the Core with your System using QSYS

- This section contains instructions on the following:
 - Adding the core to your system
 - Running the reference design
- These instructions assume that the user is familiar with the
 - OpenCore evaluation process,
 - Quartus II development software,
 - and the QSYS Interconnect tool
- For more information on these prerequisites, please visit www.altera.com

Adding the Core to your QSYS System

© Copyright 2016 Ing. Büro Für Ic-Technologie

LIFI_CAN Documentation

IFI_CAN - ifi_avalon_can_0	X	IFI CAN		
IFI_CAN if_avalon_can Block Diagram	Documentation	Name ifi_avalon_can Version 9.1 Author IFI		
► prow signals	System Clock in Hz: 50000000	Description IFI CAN - v9.1		
ifi_avalon_can_0	Registervalue Prescale:: 0	Group IFI/CAN		
can_slave_clockslave_irq 	Startvalue Time_ae:: 19	Data Sheet <u>file://C:/altera/</u>	15.1/ip/ifi/ifi_can-v9.1/doc/IFI_CAN_docu.pdf	
can_slave_clock_reset_nreset_n	Startvalue Timesegment B: 2	Baudrata		
can_slave_export tx	Baudrate KBaudi:: 1000	Dauurate:		
export rx export	Sample Point %:: 84	System Clock in Hz	Your System Clock in Hz	
vve write		Startvalue Prescale	2 255	
CS chipselect Adr[70] address	Timea Timeb	Registervalue Prescale:	Registervalue Prescale	
bbn([510] writedata bbp[310] readdata	Sync Samplepoint	Startvalue Timesegment A	031	
ifi_avalon_can		Registervalue Time_a:	Registervalue Time_a	
		Startvalue Timesegment B	231	
		Registervalue Time_b:	Registervalue Time_b	
		Baudrate KBaud:	Resulting Baudrate	
		Sample Point %:	Resulting Sample Point in %	
Warning: ifi_avalon_can: add_file: C:/altera/15.1/ip/ifi/ifi_can-v9.1/lib/n Warning: ifi_avalon_can: add_file: C:/altera/15.1/ip/ifi/ifi_can-v9.1/lib/n Warning: ifi_avalon_can: add_file: C:/altera/15.1/ip/ifi/ifi_can-v9.1/lib/n Warning: ifi_avalon_can_0: The module properties SIMULATION_MODEL_IN_VER	ioscan_top.vhd is encrypted; it cannot be used for simulation ioscan_top.vhd is encrypted; it cannot be used for simulation icancore.vhd is encrypted; it cannot be used for simulation ILOG and SIMULATION_MODEL_IN_VHDL can not both be set when using the SIMULATION file property: nioscan_top.vhd, nioscan.vhd, ificancore.vhd Cancel Finish			
	_			

© Copyright 2016 Ing. Büro Für C-Technologie

For external CPU interfaces it is possible to select the width of the databus.

64 Bits / 32Bits / 16 Bits / 8 Bits

Adding the Core to your System

	reset	Reset Input	Double-click to export	[cik]				
+	◆ s1	Avalon Memory Mapped Slave	Double-click to export	[clk]	0x0004_3020	0x0004_302f		
	external_connection	Conduit	led					
	⊡ jtag_uart	JTAG UART						
+++	clk	Clock Input	Double-click to export	clk				
+ +	reset	Reset Input	Double-click to export	[dk]		10000000000000		
+		Avalon Memory Mapped Slave	Double-click to export	[clk]	©x0004_3040	0x0004_3047		
	irq	Interrupt Sender	Double-click to export	[clk]			P−−Q	
	⊡ sysid	System ID Peripheral						
+++		Clock Input	Double-click to export	clk				
🛉 🕂	reset	Reset Input	Double-click to export	[clk]				
	← control_slave	Avalon Memory Mapped Slave	Double-click to export	[clk]	© 0x0004_3048	0x0004_304f		
	□ □ □ nios2_gen2_0	Nios II Processor						
		Clock Input	Double-click to export	clk				
	reset	Reset Input	Double-click to export	[clk]				
	data_master	Avalon Memory Mapped Master	Double-click to export	[clk]				
	instruction_master	Avaion Memory Mapped Master	Double-click to export	[cik]				
		Interrupt Receiver	Double-click to export	[CIK]	IF	IRQ IRQ I	31	
	debug_reset_request	Reset Output	Double-click to export	[CIK]				
	debug_mem_slave	Avaion Memory Mapped Slave	Double-click to export	[CIK]	0x0004_0800	0x0004_0fff		
	custom_instruction_m	Custom Instruction Master	Double-click to export					
		Clade Input	Double click to average	alle				
	can_slave_clock	t Peset Input	Double-click to export	Cik Ican clave				
	can_slave_clock_rese	Conduit	can a	[can_slave				
	can slave	Avalon Memory Mapped Slave	Double-click to export	[can_slave	0x0004 1400	0x0004 17ff		
		Interrupt Sender	Double-click to export	[can_slave				
	F canb	IFI CAN		Lean Dean a Dean			F	
│ [─] │ <mark>↓ │ ↓</mark>	can_slave_clock	Clock Input	Double-click to export	clk				
│ │ ♦╀	can_slave_clock_rese	t Reset Input	Double-click to export	[can_slave				
	can_slave_export	Conduit	can_b	[can_slave				
	can_slave	Avalon Memory Mapped Slave	Double-click to export	[can_slave	e 0x0004_1000	0x0004_13ff		
	slave_irq	Interrupt Sender	Double-click to export	[can_slave			→	

- Specify the desired instance name, base address, and IRQ
- connect the system clock to can_slave_clock Clock Input
- Complete the system generation as described in the QSYS documentation

Reference Designs

- Running a Reference Design
- Creating a Software Project
- Run a Hardware Configuration
- Using Modelsim to Simulate the Core within your System

Running a Reference Design

- Start Quartus II, version 9.1 or higher.
- Open the Quartus II project <Core installation directory>\ reference_designs\xxx\Reference_design.qpf
- Launch SOPC/QSYS Builder from Quartus II (Tools menu).
- Click "Generate" to generate the HDL, and Modelsim project files.
- Click "Exit" to go back to Quartus and compile the design.
- Launch the IDE for creation of software projects, InstructionSetSimulation or Modelsim software simulation.
 - For the Simulation are the following lines in the Testbench included rx_to_the_cana <= tx_from_the_cana and tx_from_the_canb; rx_to_the_canb <= tx_from_the_cana and tx_from_the_canb;
 - This allows communication between both CAN Nodes

Creating a Software Project

	Nios II Application and BSP from Template
	Nios II Software Examples
 File → New → NIOS II Application and BSP from Template Click Next 	Create a new application and board support package based on a software example template Target hardware information SOPC Information File name: ip\ifi\ifi_can-v9.1\ref_designs\CAN_BeMicroCV\can_qsys.sopcinfd CPU name: nios2_gen2_0 Application project Project name: hello_can
Select the SOPC Information File of your project with project name	✓ Use default location Project location: C:\altera\15.1\ip\ifi\ifi_can-v9.1\ref_designs\CAN_BeMicroCV\software\hell Project template Templates Hello Freestanding Hello MicroC/OS-II Hello World Hello World Hello Vorld
Select "Hello CAN" ———	IFI Advanced CAN beMicro IFI Hello Advanced CAN IFI Hello CAN IFI Test Advanced CAN IFI Test Advanced CAN IFI Test CAN Memory Test Memory Test Small Simple Socket Server
Click on Finish	
	(?) < Back Next > Finish Cancel
© Copyright 2016 Ing.Büro Für Ic-Technologie	39

Run a Hardware Configuration

- Select your Project within the C/C++ Projects View
- Run \rightarrow Run..
- Select NiosII Hardware
- Click on New Sun Configurations
- Click on Run

Create, manage, and run configurations The expected Stdout device name does not match the selected target byte stream device name. 📫 🗈 🗶 🖪 👘 🔻 Name: hello_can Nios II Hardware configuration type filter text 📄 Project 🛄 Target Connection 🔪 🏇 Debugger 🔲 Common 🦆 Source C/C++ Application Connections C/C++ Remote Application Processors: Launch Group Refresh Connections Cable Device Device ID Instance ID Name Architecture V 🕅 Nios II Hardware ISB-Blast **Resolve Names** hello_can Nios II Hardware configuration Nios II Hardware v2 (beta) System ID Properties... Nios II ModelSim Nios II ModelSim v2 (beta) Byte Stream Devices: Cable Device Device ID Instance ID Name Version SB-Blaster Disable 'Nios II Console' view Quartus Project File name: < Using default .sopcinfo & .jdi files extracted from ELF > System ID checks Ignore mismatched system ID Ignore mismatched system timestamp Download Download ELF to selected target system Start processor

Reset the selected target system

Filter matched 8 of 8 items

?

Close

Run

 \times

Using ModelSim to Simulate the Core within your System

- Generate your system using the SOPC Builder.
- Launch the IDE and launch ModelSim or ModelSim Altera/ Intel Edition, via the
 - Run--Run...--New Modelsim Configuration in IDE.
- Type 's' to load the design files.
- Type 'w' to add the appropriate waveforms to the wave window.
- Type 'run 5 ms' to start the simulation.
- For more details on simulation, please see Application Note 351:
 - Simulating NiosII Embedded Processor Designs. (<SOPC Builder installation directory>\documents\AN351.pdf)

Using the Core without SOPC/QSYS

- MegaWizard Plug-In Manager
- IP Catalog
- Parameterize
- Generate
- Quartus Symbol
- Reopening of the Modul
- Port Description
- Read Timing
- Write Timing

© Copyright 2016 Ing. Büro Für Ic-Technologie

Use IP Catalog and CAN IP

IP Catalog			Ţ	8×
🔍 can			×	=
🗸 🙀 Installed IP				
Y Project Dir	rectory			
✓ System	1			
	can_qsys			
✓ Library				
✓ IFI				
✓ CA	N			
	IFI_Advanced_CAN			
	F IFI_CAN			
	IFI_CAN_FD			
	🖻 ifi_avalon_can v9.1			
	📒 ifi_avalon_can_advanced v9.1			
+ Add				
Add	new iP instance			

© Copyright 2016 Ing.Büro Für Ic-Technologie

|/F|

THE CAN - ITE avaion_ca	n_v	^	HI_CAN Info		
	CAN	7	IFI_CAN		
F. Sprenger	on_can	Info	Class Name ifi_a	valon_can	
Block Diagram			Version 9.1		
	ifi avalon can 0		Author IFI		
clos	k • can_slave_clock		Description IFI	CAN - v9.1	
condu	iit Can_slave_export		Group IFI/C	CAN	
interru	pt slave_irq		Data Sheet file:	//C:/altera/1	5 1/ip/ifi/ifi cap v0 1/doc/IEL CAN docu
▼ Baudrate			Data Sheet me.	/C./altera/16	5. mp/imi_can-vs. mdoc/int_cAN_docd.
System Clock in Hz:	64000000		Baudrate:		
Startvalue Prescale:	2				
Registervalue Prescale::	0		System Clock in	Hz	Your System Clock in Hz
Startvalue Timesegment A:	20		Startvalue Prese	ale	2255
Registervalue Time_a::	19		Registervalue P	rescale:	Registervalue Prescale
Startvalue Timesegment B:	4		Startvalue Times	segment A	031
Registervalue Time_b::	2		Registervalue T	ime a:	Registervalue Time a
Baudrate KBaud::	1280		Startvalue Timer	ogmont R	2 21
Sample Point %::	84		Startvalue filles	segment b	Z
			Registervalue I	ime_b:	Registervalue Time_b
			Baudrate KBaud	l:	Resulting Baudrate
Π	Timea Timeb		Sample Point %:		Resulting Sample Point in %
Sync	Samplenoint	-			
Oyne	oumpropoint				
	Cancel	Finish			

© Copyright 2016 Ing.Büro Für Ic-Technologie

I/F/

F. Sprenger

 \times

© Copyright 2016 Ing. Büro Für C-Technologie

Generation of the Core Variation

A Parameter	rs 🖾			
System: can_t	test Path: ifi	avalon_can_	0	
F. Sprenge	IFI_(ifi_avak	CAN on_can		
Baudrate:				
System Clock	k in Hz:	50000000		
Startvalue P	rescale:	2		
Registervalu	e Prescale::	0		
Startvalue Ti	imesegment A:	20		
Registervalu	e Time_a::	19		
Startvalue Ti	imesegment B:	4		
Registervalu	e Time_b::	2		
Baudrate KB	aud::	1000	Integration with Quartus Prime Software	×
Sample Point	t %::	84	The following new files were created: C:\altera\\ifl\ff_can-v9.1\ref_designs\CAN_BeMicroCV\can_test.qsys To edit or modify a .qsys file in your design, do one of the following in the Quartus Prime software main window: - Open the .qsys file with the Open command on the File menu - Double-click the .qsys file on the Files tab in the Project Navigator - Open Qsys from the Tools menu - Use the qsys-edit command at the command line To generate HDL files from a .qsys file, do one of the following in the Quartus Prime software: - Open Qsys from the Tools menu - Use the qsys-edit command at the command line - Open Qsys from the Tools menu - Use the qsys-edit command at the command line - Open Qsys from the Quartus Prime software and click on the 'Generate HDL' button	neb int
	Path		Class	
	4 Warnings		Close	

Copyright 2016

48

Use the QuartusII IP File

- 1. File open
- 2. Search for *.qip
- 3. Select file
- 4. Project / Add current file to project

Your new QuartusII IP Symbol

© Copyright 2016 Ing.Büro Für Ic-Technologie

Port description

Portname	Direction	Usage	Description
tx	output	External	Transmit from CAN
rx	input	External	Receive to CAN
clk	input	Internal	System clock
clrn	input	Internal	System reset (low active)
we	input	Internal	Write request (high active)
CS	input	Internal	Chip select (high active)
Adr [70]	input	Internal	Address for read/write requests
Dbin[310]	input	Internal	Write data bus
Dbp[310]	output	Internal	Read data bus
intc	output	Internal	Interrupt request

I/F/

Write Timing

Read Timing

© Copyright 2016 Ing. Büro Für Ic-Technologie

Detailed Information

- Addressmap
- Registers
- CAN Timing
- Message Buffer Usage
- Status Informations
- Mask and Filter Handling
- HAL Drivers
- Driver Routines
- Structures
- Software Examples

Addressmap

- Address 0 to 3 are acting like a FIFO.
 - Writing: Transmitmessage FIFO
 - Reading: Receivemessage FIFO
- You can write up to 32 Transmitobjects into this FIFO.
- Address 1,2 and 3 can be written in any sequenz
- Writing address 0 increment the fifo pointer and the next 4 values can be written
- You can read received objects by reading address 0 to 3
- Writing 1 to Rec Fifo read next value in the status register set the read pointer to the next received object and also the next timestampvalue (if used).

Data length code

- Read => Received message
- Write => Transmit message

Byte 3	Bit	31	30	29	28	27	26	25	24
	read								
	write								
Byte 2	Bit	23	22	21	20	19	18	17	16
	read								Obj 8
	write								
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	Obj 7	Obj 6	Obj 5	Obj 4	Obj 3	Obj 2	Obj 1	Obj 0
	write								
Byte 0	Bit	7	6	5	4	3	2	1	0
	read				RTR	DLC 3	DLC 2	DLC 1	DLC 0
	write				RTR				

- Obj [8..0] : Filter Object number of a received message
- RTR : Remote transmit
- DLC [3..0] : Data length code (0 .. 8 DataBytes)

Base Address Offset 0

Identifier

- Read => Received message
- Write => Transmit message

Byte 3	Bit	31	30	29	28	27	26	25	24
	read			IDE	IDX 28	IDX 27	IDX 26	IDX 25	IDX 24
	write			IDE	IDX 28	IDX 27	IDX 26	IDX 25	IDX 24
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	IDX 23	IDX 22	IDX 21	IDX 20	IDX 19	IDX 18	IDX 17	IDX 16
	write	IDX 23	IDX 22	IDX 21	IDX 20	IDX 19	IDX 18	IDX 17	IDX 16
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	IDX 15	IDX 14	IDX 13	IDX 12	IDX 11	ID 10	ID 9	ID 8
	write	IDX 15	IDX 14	IDX 13	IDX 12	IDX 11	ID 10	ID 9	ID 8
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	ID 7	ID 6	ID 5	ID 4	ID 3	ID 2	ID 1	ID 0
	write	ID 7	ID 6	ID 5	ID 4	ID 3	ID 2	ID 1	ID 0

- IDE : 1 => Use Extended Identifier
- IDX [28..11] + ID [10..0] : Extended Identifier
- ID [10..0] : Standard Identifier

Base Address Offset 1

Data 1 - 4

- Read => Received message
- Write => Transmit message

Byte 3	Bit	31	30	29	28	27	26	25	24
	read	Data4 7	Data4 6	Data4 5	Data4 4	Data4 3	Data4 2	Data4 1	Data4 0
	write	Data4 7	Data4 6	Data4 5	Data4 4	Data4 3	Data4 2	Data4 1	Data4 0
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Data3 7	Data3 6	Data3 5	Data3 4	Data3 3	Data32	Data3 1	Data3 0
	write	Data3 7	Data3 6	Data3 5	Data3 4	Data3 3	Data3 2	Data3 1	Data3 0
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	Data2 7	Data2 6	Data2 5	Data2 4	Data2 3	Data2 2	Data2 1	Data2 0
	write	Data2 7	Data2 6	Data2 5	Data2 4	Data2 3	Data2 2	Data2 1	Data2 0
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	Data1 7	Data1 6	Data1 5	Data1 4	Data1 3	Data1 2	Data1 1	Data1 0
	write	Data1 7	Data1 6	Data1 5	Data1 4	Data1 3	Data1 2	Data1 1	Data1 0

- Data1 [7..0] : Databyte 1
- Data2 [7..0] : Databyte 2
- Data3 [7..0] : Databyte 3
- Data4 [7..0] : Databyte 4

Base Address Offset 2

© Copyright 2016 Ing.Büro Für Ic-Technologie

Data 5 - 8

- Read => Received message
- Write => Transmit message

Byte 3	Bit	31	30	29	28	27	26	25	24
	read	Data8 7	Data8 6	Data8 5	Data8 4	Data8 3	Data8 2	Data8 1	Data8 0
	write	Data8 7	Data8 6	Data8 5	Data8 4	Data8 3	Data8 2	Data8 1	Data8 0
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Data7 7	Data7 6	Data7 5	Data7 4	Data7 3	Data7 2	Data7 1	Data7 0
	write	Data7 7	Data7 6	Data7 5	Data7 4	Data7 3	Data7 2	Data7 1	Data7 0
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	Data6 7	Data6 6	Data6 5	Data6 4	Data6 3	Data6 2	Data6 1	Data6 0
	write	Data6 7	Data6 6	Data6 5	Data6 4	Data6 3	Data6 2	Data6 1	Data6 0
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	Data5 7	Data5 6	Data5 5	Data5 4	Data5 3	Data5 2	Data5 1	Data5 0
	write	Data5 7	Data5 6	Data5 5	Data5 4	Data5 3	Data5 2	Data5 1	Data5 0

- Data5 [7..0] : Databyte 5
- Data6 [7..0] : Databyte 6
- Data7 [7..0] : Databyte 7
- Data8 [7..0] : Databyte 8

Base Address Offset 3

© Copyright 2016 Ing. Büro Für Ic-Technologie

Timing and Control

Byte 3	Bit	31	30	29	28	27	26	25	24
	read						SJW 1	SJW 0	
	write	Set prescale	Set Silent Mode		Silent Mode	Remove pending Message			Normal mode
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Prescale 7	Prescale 6	Prescale 5	Prescale 4	Prescale 3	Prescale 2	Prescale 1	Prescale 0
	write	Prescale 7	Prescale 6	Prescale 5	Prescale 4	Prescale 3	Prescale 2	Prescale 1	Prescale 0
Byte 1	Bit	15	14	13	12	11	10	9	8
	read				Timea 4	Timea 3	Timea 2	Timea 1	Timea 0
	write	Set timea	Set SJW		Timea 4	Timea 3	Timea 2	Timea 1	Timea 0
Byte 0	Bit	7	6	5	4	3	2	1	0
	read				Timeb 4	Timeb 3	Timeb 2	Timeb 1	Timeb 0
	write	Set timeb	SJW 1	SJW 0	Timeb 4	Timeb 3	Timeb 2	Timeb 1	Timeb 0

Base Address Offset 4

Timing and Control

- Timea [4..0] : Timing Segment B
- Timeb [4..0] : Timing Segment A
- Prescale [7..0] : Prescale Counter
- SJW [1..0] : Synchronisation Jump Width
- Normal Mode:
 - writing 1, start the CAN Node or restart after busoff
 - writing 0, not used
- Silent Mode:
 - writing 1, the CAN Node receive messages without Acknowledgement
 - writing 0, the CAN Node receive messages with Acknowledgement
- Remove pending Message
 - writing 1, the CAN Node removes the ongoing message from the transmit buffer

Timing Settings for CAN

- The prescale counter divide your clock frequency
 - The number you fill in is incremented by 2
 - Example: the clock frequency is 50 MHz → 20 ns for each clock period. If you write a 2 to the prescale → division factor = 4 → 80 ns for each time segment
- The bit length for the CAN transmission rate is
 - 1 time segment for Sync
 - (Timea+1) * time segment before samplepoint
 - (Timeb+2) * time segment after samplepoint

Sync Segment	Timeslot before Samplepoint Timeslot after Samplepoint				
		Timeb – SJW + 1 SJW +			
1	Timea + 1	Timeb + 2			
	Samplepoint \rightarrow				
4	Total Bit Tir	ne	\rightarrow		

Timing Settings for CAN

Example:

- You want to transmit with 500k baudrate
- 1 / 500k \rightarrow 2000 ns total bit time
- If the length of one time segment is 80 ns
 - Divide 2000 / 80 \rightarrow 25 segments are necessary
- 25 − 1 segments for sync \rightarrow 24 segments
- The relationship between timea and timeb is responsible for the samplepoint
- If you chose 14 for (timea +1) and 10 for (timeb +2)
 - Your samplepoint will be at 60% of the bit time
- Timea has to be written with the value 13
- Timeb has to be written with the value 8
- Synchronisation Jump Width
 - Default value $0 \rightarrow \text{Resynchronisation Jump is 1 Time segment}$
 - Max value $3 \rightarrow$ Resynchronisation Jump is 4 Time segments
 - Timeb includes the Synchronisation Jump Width

Transmit Fifo Usage

- First in First out

Interrupt mask

Byte 3	Bit	31	30	29	28	27	26	25	24
	read			Rec Buffer full	Rec Buffer overflow	Rec Buffer not empty	Tra Buffer full	Tra Buffer overflow	Tra Buffer empty
	write	Set Buffer Int Mask		Rec Buffer full	Rec Buffer overflow	Rec Buffer not empty	Tra Buffer full	Tra Buffer overflow	Tra Buffer empty
Byte 2	Bit	23	22	21	20	19	18	17	16
	read								
	write								
Byte 1	Bit	15	14	13	12	11	10	9	8
	read		Transmit ok						
	write	Set Transmit Ok Int Mask	Transmit ok						
Byte 0	Bit	7	6	5	4	3	2	1	0
	read							Error warn	Busoff
	write	Set Error Int Mask						Busoff	Error warn

Interrupt Mask settings : $1 \rightarrow$ Interrupt enabled

Set Buffer Int Mask : $1 \rightarrow$ write only interrupt mask for the receive and transmit buffer

Set Error Int Mask : $1 \rightarrow$ write only interrupt mask for the error flags

■ Set Transmit ok Int Mask : 1 → write only interrupt mask for the Transmit ok flag

Base Address Offset 5

© Copyright 2016 Ing.Büro Für Ic-Technologie

F. Sprenger

Document changed

Byte 3	Bit	31	30	29	28	27	26	25	24
	read	Receive busy	Transmit busy	Rec Buffer full INT	Rec Buffer overflow INT	Rec Buffer not empty INT	Tra Buffer full INT	Tra Buffer overflow INT	Tra Buffer empty INT
	write			R B full INT reset	R B overflow INT reset	R B not empty INT reset	T B full INT reset	T B overflow INT reset	T B empty INT reset
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Receive Buffer full	Transmit Buffer full	Rec Buffer Counter 5	Rec Buffer Counter 4	Rec Buffer Counter 3	Rec Buffer Counter 2	Rec Buffer Counter 1	Rec Buffer Counter 0
	write	Reset rec Counter							
Byte 1	Bit	15	14	13	12	11	10	9	8
	read		Transmit ok INT	Tra Buffer Counter 5	Tra Buffer Counter 4	Tra Buffer Counter 3	Tra Buffer Counter 2	Tra Buffer Counter 1	Tra Buffer Counter 0
	write	Reset trans Counter	Transmit ok INT reset						
Byte 0	Bit	7	6	5	4	3	2	1	0
	read				Silent mode	Error passive	Error active	Error warn	busoff
	write	RecFifo read next value						Error warn INT reset	busoff INT reset

Status of the CAN node

Base Address Offset 6

© Copyright 2016 Ing.Büro Für Ic-Technologie

Status Register

Busoff

- The CAN node has stopped all activities
- Reading the Interrupt set the bit to 0
- Error warn
 - The number of errors is nearly before switching to Error passive
- Error active
 - The CAN node works properly
- Error passive
 - The CAN node has stopped transmitting until the number of errors is reduced by enough succesfully received messages
- Silent Mode
 - Reading 1 → Silent Mode active
- Rec Fifo read next value
 - Writing 1 to the bit increment the receive buffer read pointer to the next message and decrement the read buffer counter
- Tra buffer counter [5..0]
 - The number of messages waiting for transmit
- Reset trans counter
 - Writing 1 to the bit set the transmit buffer counter to 0 until writing 0
 - All messages in the transmit fifo are lost
- Rec buffer counter [5..0]
 - The number of received messages waiting for read
- Reset rec counter
 - Writing 1 to the bit set the receive buffer counter to 0 until writing 0
 - All messages in the receive fifo are lost
- Transmit buffer full
 - Status of the transmit buffer
- Receive buffer full
 - Status of the receive buffer

© Copyright 2016 Ing. Büro Für Ic-Technologie

Status Register

- Tra buffer empty INT
 - The buffer was not empty and the last message is on transmit
 - Writing 1 reset the interrupt
- Tra buffer overflow INT
 - The messages written into the transmit buffer are lost, because it was already full
 - Writing 1 reset the interrupt
- Tra buffer full INT
 - The transmit buffer is full
 - Writing 1 reset the interrupt
- Rec buffer not empty INT
 - The buffer was empty and the first message was written in the receive buffer
 - Writing 1 reset the interrupt
- Rec buffer overflow INT
 - Received messages are lost, because the receive buffer was already full
 - Writing 1 reset the interrupt
- Rec buffer full INT
 - The receive buffer is full
 - Writing 1 reset the interrupt
- Transmit busy
 - Messages are waiting for transmit
- Receive busy
 - Messages are waiting for read
- Transmit ok INT
 - The actual message was succesfull transmitted
 - Writing 1 reset the interrupt

Error counter

Byte 3	Bit	31	30	29	28	27	26	25	24
	read								
	write								
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Rec Error 7	Rec Error 6	Rec Error 5	Rec Error 4	Rec Error 3	Rec Error 2	Rec Error 1	Rec Error 0
	write								
Byte 1	Bit	15	14	13	12	11	10	9	8
	read								Tra Error 8
	write								
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	Tra Error 7	Tra Error 6	Tra Error 5	Tra Error 4	Tra Error 3	Tra Error 2	Tra Error 1	Tra Error 0
	write								

- Rec Error [7..0] : Number of the receive errors
- Tra Error [8..0] : Number of the transmit errors

Base Address Offset 7

Version

Byte 3	Bit	31	30	29	28	27	26	25	24
	read	Month 7	Month 6	Month 5	Month 4	Month 3	Month 2	Month 1	Month 0
	write								
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Year 7	Year 6	Year 5	Year 4	Year 3	Year 2	Year 1	Year 0
	write								
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	Quartus 7	Quartus 6	Quartus 5	Quartus 4	Quartus 3	Quartus 2	Quartus 1	Quartus 0
	write								
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	Core rev 7	Core rev 6	Core rev 5	Core rev 4	Core rev 3	Core rev 2	Core rev 1	Core rev 0
	write								

month - year - quartus - core revision

Base Address Offset 8

© Copyright 2016 Ing. Büro Für Ic-Technologie

Filter mask

Byte 3	Bit	31	30	29	28	27	26	25	24
	read	valid		Mask extd	Mask 28	Mask 27	Mask 26	Mask 25	Mask 24
	write	valid		Mask extd	Mask 28	Mask 27	Mask 26	Mask 25	Mask 24
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	Mask 23	Mask 22	Mask 21	Mask 20	Mask 19	Mask 18	Mask 17	Mask 16
	write	Mask 23	Mask 22	Mask 21	Mask 20	Mask 19	Mask 18	Mask 17	Mask 16
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	Mask 15	Mask 14	Mask 13	Mask 12	Mask 11	Mask 10	Mask 9	Mask 8
	write	Mask 15	Mask 14	Mask 13	Mask 12	Mask 11	Mask 10	Mask 9	Mask 8
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	Mask 7	Mask 6	Mask 5	Mask 4	Mask 3	Mask 2	Mask 1	Mask 0
	write	Mask 7	Mask 6	Mask 5	Mask 4	Mask 3	Mask 2	Mask 1	Mask 0

Valid :

- 1 \rightarrow use this mask
- $0 \rightarrow$ ignore this mask

Mask : $1 \rightarrow$ compare this bit

 $0 \rightarrow$ ignore the value of the bit

Base Address Offset 128...

© Copyright 2016 Ing. Büro Für Ic-Technologie

Filter Identifier

Byte 3	Bit	31	30	29	28	27	26	25	24
	read	valid		IDE	IDX 28	IDX 27	IDX 26	IDX 25	IDX 24
	write	valid		IDE	IDX 28	IDX 27	IDX 26	IDX 25	IDX 24
Byte 2	Bit	23	22	21	20	19	18	17	16
	read	IDX 23	IDX 22	IDX 21	IDX 20	IDX 19	IDX 18	IDX 17	IDX 16
	write	IDX 23	IDX 22	IDX 21	IDX 20	IDX 19	IDX 18	IDX 17	IDX 16
Byte 1	Bit	15	14	13	12	11	10	9	8
	read	IDX 15	IDX 14	IDX 13	IDX 12	IDX 11	ID 10	ID 9	ID 8
	write	IDX 15	IDX 14	IDX 13	IDX 12	IDX 11	ID 10	ID 9	ID 8
Byte 0	Bit	7	6	5	4	3	2	1	0
	read	ID 7	ID 6	ID 5	ID 4	ID 3	ID 2	ID 1	ID 0
	write	ID 7	ID 6	ID 5	ID 4	ID 3	ID 2	ID 1	ID 0

- Valid : $1 \rightarrow$ use this identifier $0 \rightarrow$ ignore this identifier
- IDE : $1 \rightarrow$ Use Extended Identifier
- IDX [28..11] + ID [10..0] : Extended Identifier

Base Address Offset 129...

Base Address Offset 128 .. 255 for 64 masks

Address	Contents		Object					
128	Valid	Mask0	1	Valid can switch on or off any object. The object number, with a match				
129	Valid	ID0	•					
130	Valid	Mask1	2	message, is readable on address 0				
131	Valid	ID1						
		· ·						
254	Valid	Mask63	64					
255	Valid	ID63						

© Copyright 2016 Ing. Büro Für Ic-Technologie

Mask and Filter

Filter standard / extended message

Bit Mask extd		0		1		1		1		1	
Bit IDE X		Х		0		1		0		1	
IDE-received message X		Х		0		1		1		0	
result Matched Stand		h dard or nded ID	Match Standard ID		Match Extended ID		No	match	No match		
	maskbit		0	1	1		1		1		
	ldbit-filter		Х	0	1		0	1			
	Idbit-received message		Х	0	1		1 0				
	result		match	match	match		No mate	match No mate		ch	

Filter standard / extended Identifier

© Copyright 2016 Ing. Büro Für Ic-Technologie

Filter and Mask Example

- For filtering on 60 to 65 you need 2 ID and mask entries
- Looking for standard IDs (not extend ID)
- For ID 60-63
 - IOWR_IFI_NIOS_CAN_BUFFER(base, 0, 0xBFFFFFC); //mask 60-63
 - IOWR_IFI_NIOS_CAN_BUFFER(base, 1, 0x8000003C); //ID 60-63
- For ID 64-65
 - IOWR_IFI_NIOS_CAN_BUFFER(base, 2, 0xBFFFFFE); //mask 64-65
 - IOWR_IFI_NIOS_CAN_BUFFER(base, 3, 0x80000040); //ID 64-65

Order of the ID Bits

- Example for transmitting, filtering and receiving the CAN ID
- ID-Format (like CANalyzer) you want to send with extended
 value = 0x01234567;
- Convert to IFI CAN-core ID format
 - transmitID = ((value & 0x3FFFF) <<11) + ((value & 0x1FFC0000)>>18);
 - transmitID |= 0x2000000; // set IDE for extended ID !!!
- Same for the filter
- Read receiveID
- Convert the IFI CAN-core ID format to the other ID format
 - value = ((receiveID & 0x7FF) << 18) + ((receiveID & 0x1FFFF800) >> 11);
 - value &= ~0x2000000; // mask the IDE

Software for NIOS II and IDE / SBT

Files

CAN driver routines (ifi_avalon_can.c)

- ifi_avalon_can_open ()
 - Initialize of the CAN node
 - Base, pointer to structure canall_s with timing, interrupt mask, status, mask and filter
 - Return the version of the core

ifi_avalon_can_read ()

- read a message from the buffer and increment the buffer pointer
- Base, pointer to structure canmsg_s with identifier, data[0], data[1], dlc
- Return 1 for succesfull read, -1 for error
- ifi_avalon_can_write ()
 - Transmit a message
 - Base, pointer to structure canmsg_s with identifier, data[0], data[1], dlc
 - Return 1 for succesfull read, -1 for error

ifi_avalon_can_stat ()

- Read the interrupt mask register, the status register and error register
- Base, pointer to structure canstat_s with interruptmask, status, error
- Return 0 for for succesfull read, -1 for error

ifi_avalon_can_wr_int ()

- Enable the interrupts
- Base, Interruptregister
- Return 0 for for succesfull write, -1 for error

ifi_avalon_can_wr_status ()

- Write the status register only
- Base, statusregister
- Return 0 for for succesfull write, -1 for error

ifi_avalon_can_wr_filter ()

- Write a single mask and filterpair
- Base, filternumber, filter mask, filter identifier
- Return 0 for for succesfull write, -1 for error

ifi_avalon_can_irq ()

- Install the interrupts
- Base, Irq number, pointer to structure capture_s with base, status, irqcount, irqdone
- Return 0 for for succesfull install

Structures (ifi_avalon_can.h)

struct canmsg_s	
{ alt_u32 EPR_CANdle:	// data length code
alt_u32 EPA_CANid:	// identifier
alt_u32 CANdata[2]:	// 8 Byte Data
}·	n o byte bala
struct canall s	
{	
alt_u32 EPT_CANtime;	// timing
alt_u32 EPI_CANint;	// interrupt mask
alt_u32 EPS_CANstatus;	// status
alt_u32 EPE_CANerror;	// error
alt_u32 CANbuffer[128];	// mask and filter
};	
struct canstat_s	
{	
alt_u32 EPI_CANint;	// interrupt mask
alt_u32 EPS_CANstatus;	// status
alt_u32 EPE_CANerror;	// error counters
};	
struct capture_s	
{	
int base;	// remember base for ISR (done by driver)
alt_u32 EPS_CANstatus;	// remember Status bevor irq-reset
alt_u32 irqcnt;	// counts incomming Interrupts
ait_u32 irqdone;	// counts processed interrupts
};	

Software Examples

There are 2 examples included

- ifi_hello_can.c
- ifi_test_can.c

ifi_hello_can.c

 A simple program which demonstrates a communication between 2 CAN nodes

ifi_test_can.c

 A more complex program which test all features of a communication between 2 CAN nodes

License Agreement

PLEASE REVIEW THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE USING THE IFI IP-MODULE. BY USING THE IFI IP-MODULE AND/OR PAYING A LICENSE FEE, YOU INDICATE YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS, WHICH CONSTITUTE THE LICENSE AGREEMENT (the "AGREEMENT") BETWEEN YOU AND IFI. IN THE EVENT THAT YOU DO NOT AGREE WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT USE THE IFI IP-MODULE AND WE ASK YOU TO DESTROY ANY COPIES YOU HAVE MADE IMMEDIATELY.

DEFINITIONS:

"Party" means either IFI or YOU.

"Specification" means IFI's technical description for the IFI IP-MODULE covered by this Agreement to the extent such technical description relates to the operation, performance and other material attributes of the IFI IP-MODULE.

1. License to the IFI IP-MODULE:

1.1 Subject to the terms and conditions of this Agreement (including but not limited to YOUR payment of the license fee set forth in Paragraph 4.0), IFI grants to YOU a single-user, non-transferable, non-exclusive and (except as specified by IFI) perpetual license to use the IFI IP-MODULE as follows. YOU may:

(a) design with, parameterize, compile and route the IFI IP-MODULE;

(b) program Altera devices with the IFI IP-MODULE;

(c) use the IFI IP-MODULE on a single computer only; and

(d) except as otherwise provided in Paragraph 1.2, YOU may use, distribute, sell and/or otherwise market products containing licensed products to any third party in perpetuity. YOU may also sublicense YOUR right to use and distribute products containing licensed products as necessary to permit YOUR distributors to distribute and YOUR customers to use products containing licensed products. YOU are expressly prohibited from using the IFI IP-MODULE to design, develop or program Non-Altera Devices.

- 1.2 YOU may make only one copy of the IFI IP-MODULE for back-up purposes only. The IFI IP-MODULE may not be copied to, installed on or used with any other computer, or accessed or otherwise used over any network, without prior written approval from IFI.
- 1.3 Any copies of the IFI IP-MODULE made by or for YOU shall include all intellectual property notices, including copyright and proprietary rights notices, appearing on such IFI IP-MODULE. Any copy or portion of the IFI IP-MODULE, including any portion merged into a design and any design or product that incorporates any portion of the IFI IP-MODULE, will continue to be subject to the terms and conditions of this Agreement.
- 1.4 The source code of the IFI IP-MODULE, and algorithms, concepts, techniques, methods and processes embodied therein, constitute trade secrets and confidential and proprietary information of IFI and its licensors and LICENSEE shall not access or use such trade secrets and information in any manner, except to the extent expressly permitted herein. IFI and its licensors retain all rights with respect to the IFI IP-MODULE, including any copyright, patent, trade secret and other proprietary rights, not expressly granted herein.

2. License Restrictions:

YOU MAY NOT USE THE IFI IP-MODULE EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS AGREEMENT OR SUBLICENSE OR TRANSFER THE IFI IP-MODULE OR RIGHTS WITH RESPECT THERETO. YOU MAY NOT DECOMPILE, DISASSEMBLE, OR OTHERWISE REVERSE ENGINEER THE IFI IP-MODULE OR ATTEMPT TO ACCESS OR DERIVE THE SOURCE CODE OF THE IFI IP-MODULE OR ANY ALGORITHMS, CONCEPTS, TECHNIQUES, METHODS OR PROCESSES EMBODIED THEREIN; PROVIDED, HOWEVER, THAT IF YOU ARE LOCATED IN A MEMBER NATION OF THE EUROPEAN UNION OR OTHER NATION THAT PERMITS LIMITED REVERSE ENGINEERING NOTWITHSTANDING A CONTRACTUAL PROHIBITION TO THE CONTRARY, YOU MAY PERFORM LIMITED REVERSE ENGINEERING, BUT ONLY AFTER GIVING NOTICE TO IFI AND ONLY TO THE EXTENT PERMITTED BY THE APPLICABLE LAW IMPLEMENTING THE EU SOFTWARE DIRECTIVE OR OTHER APPLICABLE LAW NOTWITHSTANDING A CONTRACTUAL PROHIBITION TO THE CONTRARY.

3. Term:

This Agreement is effective until terminated. YOU may terminate it at any time by destroying the IFI IP-MODULE together with all copies and portions thereof in any form (except as provided below). It will also terminate immediately if YOU breach any term of this Agreement and upon conditions set forth elsewhere in this Agreement. Upon any termination of this Agreement, YOU shall destroy the IFI IP-MODULE, including all copies and portions thereof in any form (whether or not merged into a design or Licensed Product), and YOUR license and rights under this Agreement shall terminate except that YOU and YOUR customers may continue to sell and use Licensed Products which have been developed in accordance with this Agreement and shipped prior to the termination. In no event may any portions of the IFI IP-MODULE be used in development after termination. In the event of termination for any reason, the rights, obligations and restrictions under Paragraphs 2, 4, 9, and 10 shall survive termination of this Agreement.

4. Payment:

In consideration of the license granted by IFI under Paragraph 1.1 and other rights granted under this Agreement, YOU shall pay the license fee for the IFI IP-MODULE that has been specified by IFI. Such payment shall, as directed by IFI, be made directly to IFI.YOU shall pay all taxes and duties associated with this Agreement, other than taxes based on IFI's income.

5. Maintenance and Support:

IFI shall, but only until the date, in the format YYYY.MM, provided in the license file for a IFI IP-MODULE ("Maintenance Expiration Date"):

- 5.1 use commercially reasonable efforts to provide YOU with fixes to defects in the IFI IP-MODULE that cause the IFI IP-MODULE not to conform substantially to the Specifications and that are diagnosed as such and replicated by IFI;
- 5.2 provide YOU with fixes and other updates to the IFI IP-MODULE that IFI chooses to make generally available to its customers without a separate charge; and
- 5.3 respond by telephone or email to inquiries from YOU.

6. Limited Warranties and Remedies:

- 6.1 IFI represents and warrants that, until the Maintenance Expiration Date ("Warranty Period"), the IFI IP-MODULE will substantially conform to the Specifications. YOUR sole remedy, and IFI's sole obligation, for a breach of this warranty shall be (a) for IFI to use commercially reasonable efforts to remedy the non-conformance or (b) if IFI is unable substantially to remedy the non-conformance, for YOU to receive a refund of license fees paid during the previous one (1) year for the defective IFI IP-MODULE. If YOU receive such a refund, YOU agree that YOUR license and rights under this Agreement for the defective IFI IP-MODULE shall immediately terminate and YOU agree to destroy the defective IFI IP-MODULE, including all copies thereof in any form and any portions thereof merged into a design or product, and to certify the same to IFI.
- 6.2 The foregoing warranties apply only to IFI IP-MODULEs delivered by IFI. The warranties are provided only to YOU, and may not be transferred or extended to any third party, and apply only during the Warranty Period for claims of breach reported (together with evidence thereof) during the Warranty Period. YOU shall provide IFI with such evidence of alleged non-conformities or defects as IFI may request, and IFI shall have no obligation to remedy any non-conformance or defect it cannot replicate. The warranties do not extend to any IFI IP-MODULE which have been modified by anyone other than IFI.

7. Representation:

Each party represents that it has the right to enter into this Agreement and to perform its obligations hereunder.

8. Indemnification:

- 8.1 Expressly subject to Section 9, IFI shall defend YOU against any proceeding brought by a third party to the extent based on a claim that the IFI IP-MODULE, as delivered by IFI and as used in accordance with this Agreement, infringes a third party's copyright, trade secret, patent, or any other intellectual property right ("IP right"), and pay any damages awarded in the proceeding as a result of the claim (or pay any amount agreed to by IFI as part of a settlement of the claim), provided that IFI shall have no liability hereunder unless YOU notify IFI promptly in writing of any such proceeding or claim, give IFI sole and complete authority to control the defence and settlement of the proceeding or claim, and provide IFI with any information, materials, and other assistance requested by IFI.
- 8.2 In the event of any such claim or proceeding or threat thereof, IFI may (and, in the event any such claim or proceeding results in the issuance of an injunction by a court of competent jurisdiction prohibiting YOU from using the IFI IP-MODULE, IFI shall), at its option and expense and subject to the limitations of Paragraph 9, seek a license to permit the continued use of the affected IFI IP-MODULE or use commercially reasonable efforts to replace or modify the IFI IP-MODULE so that the replacement or modified version is non-infringing or has a reduced likelihood of infringement, provided that the replacement or modified version has functionality comparable to that of the original. If IFI is unable reasonably to obtain such license or provide such replacement or modification, IFI may terminate YOUR license and rights with respect to the affected IFI IP-MODULE, in which event YOU shall return to IFI the affected IFI IP-MODULE, including all copies and portions thereof in any form (including any portions thereof merged into a design or product), and certify the same to IFI, and IFI shall refund the license fee paid by YOU for the affected IFI IP-MODULE.

IFI shall have no liability or obligation to YOU hereunder for any infringement or claim based on or resulting from (a) the combination or use of the IFI IP-MODULE with other products or components; (b) modification of the IFI IP-MODULE by anyone other than IFI, (c) the use of other than the most recent version of the IFI IP-MODULE if the infringement or claim would have been avoided (or the likelihood thereof reduced) by use of the most recent version; (d) requirements specified by YOU; (e) use of the IFI IP-MODULE in any way not contemplated under this Agreement; or (f) any use of the IFI IP-MODULE, to the extent that IFI has indicated in the applicable Specification that third-party licenses 8.3a may be required to use such IFI IP-MODULE if LICENSEE has not obtained the necessary third-party licenses.

- 8.3a The license does not include the CAN-Network license (Bosch).
- 8.4 The provisions of this Paragraph 8 state the entire liability and obligations of IFI, and YOUR sole and exclusive rights and remedies, with respect to any proceeding or claim relating to infringement of copyright, trade secret, patent, or any other intellectual property right.

LIMITATIONS OF LIABILITY

- 9.1 In no event shall the aggregate liability of IFI relating to this Agreement or the subject matter hereof under any legal theory (whether in tort, contract or otherwise), including any liability under Paragraph 8 or for any loss or damages directly or indirectly suffered by YOU relating to the IFI IP-MODULE, exceed the aggregate amount of the license fees paid by YOU in the previous one (1) year under this Agreement.
- 9.2 IN NO EVENT SHALL IFI BE LIABLE UNDER ANY LEGAL THEORY, WHETHER IN TORT, CONTRACT OR OTHERWISE (a) FOR ANY LOST PROFITS, LOST REVENUE OR LOST BUSINESS, (b) FOR ANY LOSS OF OR DAMAGES TO OTHER SOFTWARE OR DATA, OR (c) FOR ANY INCIDENTAL, INDIRECT, CONSEQUENTIAL OR SPECIAL DAMAGES RELATING TO THIS AGREEMENT OR THE SUBJECT MATTER HEREOF, INCLUDING BUT NOT LIMITED TO THE DELIVERY, USE, SUPPORT, OPERATION OR FAILURE OF THE MEGACORE LOGIC IFI IP-MODULE, EVEN IF IFI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LIABILITY.

10. General:

- 10.1 YOU may not sublicense, assign, or transfer this license, or disclose any trade secrets embodied in the IFI IP-MODULE, except as expressly provided in this Agreement. Any attempt to sublicense, assign, or otherwise transfer without prior written approval of the other party any of the rights, duties, or obligations hereunder is void.
- 10.2 This Agreement is entered into for the benefit of IFI and its licensors and all rights granted to YOU and all obligations owed to IFI shall be enforceable by IFI.
- 10.3 If YOU have any questions concerning this Agreement, including software maintenance or warranty service, YOU should contact IFI Ing.Büro Für Ic-Technologie, Franz Sprenger, Kleiner Weg 3, 97877 Wertheim, Germany.
- 10.4 YOU agree that the validity and construction of this Agreement and performance hereunder, shall be governed by the laws of German jurisdictions, without reference to conflicts of law principles. YOU agree to submit to the exclusive jurisdiction of the courts in Germany, for the resolution of any dispute or claim arising out of or relating to this Agreement. The Parties hereby agree that the Party who does not prevail with respect to any dispute, claim, or controversy relating to this Agreement shall pay the costs actually incurred by the prevailing Party, including any attorneys' fees.
- 10.5 No amendment to this Agreement shall be effective unless it is in writing signed by a duly authorized representative of both Parties. The waiver of any breach or default shall not constitute a waiver of any other right hereunder.
- 10.6 In the event that any provision of this Agreement is held by a court of competent jurisdiction to be legally ineffective or unenforceable, such provision shall be reformed only to the extent necessary to make it enforceable and the validity of the remaining provisions shall not be affected.
- 10.7 The article headings throughout this Agreement are for reference purposes only and the words contained therein shall not be construed as a substantial part of this Agreement and shall in no way be held to explain, modify, amplify, or aid in the interpretation, construction or meaning of the provisions of this Agreement.
- 10.8 BY USING THE IFI IP-MODULE, YOU AND IFI ACKNOWLEDGE THAT YOU AND IFI HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU AND IFI FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND IFI, WHICH SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN YOU AND IFI RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT, UNLESS YOU HAVE A SEPARATE LICENSE SIGNED BY AN AUTHORIZED IFI REPRESENTATIVE.

All about FPGA-design since 1985

- ✓ Training Classes
 - Quartus[®]
 - Expert, TimeQuest
 - VHDL
 - SOPC/QSYS
 - SOC
 - ... Decian Ce
- Design Service
 - IPs
 - CAN + CAN-FD Controller
 - Gigabit Ethernet MAC
 - PCI Master/Target
- Consulting